绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
吹爆!!!适合数据科学小白的Python工具
2019-12-26 11:58:20

图片源自 Unsplash, Florian Klauer

在数据科学项目的任何阶段,Python均可提供相关工具。所有数据科学项目都包含以下3个阶段。

  • 数据收集
  • 数据建模
  • 数据可视化

Python可为这三个阶段提供非常巧妙的工具。

数据收集

1) Beautiful Soup

https://pypi.org/project/beautifulsoup4/


Digital Ocean

数据收集包括从网页上获取数据,python可为此提供一个名为beautifulsoup的库。

from bs4 import Beautiful
Soup soup = BeautifulSoup(html_doc, 'html.parser')


该库可解析、有序存储网页内容。例如,该库将根据标题分别存储,包括存储所有<a>标签,在页面中呈现非常简洁的URL列表。

举个例子,请看《爱丽丝梦游仙境》中一个故事的简单网页。

网页截图

显然,从中存在一些可获取的html元素。

1.标题—睡鼠的故事

2.页面文本

3.超链接 — Elsie,Lacie和Tillie。

Soup可轻松提取这些信息。

soup.title
# <title>The Dormouse's story</title>

soup.title.string
# u'The Dormouse's story'

soup.p
# <p class="title"><b>The Dormouse's story</b></p>

for link in soup.find_all('a'):
    print(link.get('href'))
# http://example.com/elsie
# http://example.com/lacie
# http://example.com/tillie

print(soup.get_text())
# The Dormouse's story
#
# Once upon a time there were three little sisters; and their names
 were
# Elsie,
# Lacie and
# Tillie;
# and they lived at the bottom of a well.
#
# ...


该工具可从HTML和XML文件中提取数据,表现出色,也因此成为导航、搜索和修改解析树的惯用方法。使用该工具通常可节省程序员的工作时间,从几小时到几天不等。


2) Wget

https://pypi.org/project/wget/


来源 : Fossmint


下载数据,尤其是从网页上下载数据,是数据科学家们的重要任务之一。Wget是一款免费的程序,以非交互式方式从网页上下载文件。由于具有非交互式特征,即使用户未登录,程序也可在后台运行。程序支持HTTP、HTTPS和FTP协议,可通过HTTP代理进行检索。因此,下次如果从网页上下载一个网站或所有图片时,可以考虑使用wget。

>>> import wget
 >>> url = 'www.futurecrew.com/skaven/song_files/mp3/razorback.mp3'
 >>> filename = wget.download(url)
  [................................................] 3841532 /
 3841532
>>> filename
 'razorback.mp3'


3) Data APIs

除了需要用于获取或下载数据的工具外,还需要实际数据。Data APIs在这一点上很有帮助。Python中存在许多API,供您免费下载数据。例如,Alpha Vantage可提供全球股票、外汇和加密货币的实时数据和历史数据。Data APIs拥有长达20年的数据。

例如,我们可以使用alpha vantage API,提取有关比特币每日价值的数据并进行绘制:

from alpha_vantage.cryptocurrencies
 import CryptoCurrenciesimport matplotlib.pyplot as plt
cc = CryptoCurrencies(key='YOUR_API_KEY',output_format='pandas')
data, meta_data = cc.get_digital_currency_daily(symbol='BTC',
 market='USD')
data['1a. open (USD)'].plot()
plt.tight_layout()
plt.title('Alpha Vantage Example - daily value for bitcoin (BTC) in US
 Dollars')
plt.show()


Plotted Image

API的其他用途如下:

  • 开启通知API — NASA和国际空间站数据
  • 汇率API — 欧洲中央银行公布的当前和历史汇率


用于数据收集的几个API


数据建模

如本文所述,数据清洗或平衡是数据建模前的重要步骤。

1)Imbalanced-learn

http://glemaitre.github.io/imbalanced-learn/index.html

Imabalanced-learn用于平衡数据集。较其他类别而言,如果同一级别或类别的数据样本差异比例较大,那么该数据集就是不平衡的。这可能导致分类算法面临巨大考验,终偏向具有更多数据的类别。

例如,来自该库的名为Tomek-Links的命令有助于平衡数据集:

from imblearn.under_sampling import TomekLinks
  tl = TomekLinks(return_indices=True, ratio='majority')
 X_tl, y_tl, id_tl = tl.fit_sample(X, y)

平衡失衡的数据集

2) Scipy Ecosystem — NumPy

https://www.numpy.org/



通过python的scipy堆栈,对实际数据进行处理或建模。Python的SciPy Stack是专为Pytho中的科学计算而设计的软件集合。Scipy ecosystem包含许多有用的库,但Numpy可以说是其中强大的工具。

NumPy全称为Numerical Python,是构建科学计算堆栈基础的软件包。它为矩阵操作提供了很多有用的功能。如果使用过MATLAB,就会立刻发现NumPy不仅与MATLAB一样功能强大,而且在操作上也非常相似。

3) Pandas

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

Pandas可提供数据结构,处理并操纵数据。被称为dataframe的二维结构是受欢迎的结构。

Pandas是处理数据的完美工具,旨在进行快速简便的数据操作、聚合和可视化。


数据可视化

1) Matplotlib

Matplotlib是来自Scipy ecosystem的另一软件包,它可以轻松生成简单而强大的可视化。该软件是2D绘图库,可生成出版质量级别的图形,具有多种硬拷贝格式。

以下是Matplotlib输出的例子:

import numpy as np
import matplotlib.pyplot as plt

N = 5
menMeans = (20, 35, 30, 35, 27)
womenMeans = (25, 32, 34, 20, 25)
menStd = (2, 3, 4, 1, 2)
womenStd = (3, 5, 2, 3, 3)
ind = np.arange(N)    # the x locations for the groups
width = 0.35       # the width of the bars: can also be len(x) sequence

p1 = plt.bar(ind, menMeans, width, yerr=menStd)
p2 = plt.bar(ind, womenMeans, width,
             bottom=menMeans, yerr=womenStd)

plt.ylabel('Scores'
)plt.title('Scores by group and gender')
plt.xticks(ind, ('G1', 'G2', 'G3', 'G4', 'G5'))
plt.yticks(np.arange(0, 81, 10))
plt.legend((p1[0], p2[0]), ('Men', 'Women'))

plt.show()

Bar Plot

其他例子

Taken from Matplotlib Docs

2) Seaborn

https://seaborn.pydata.org/

Seaborn是基于matplotlib的Python数据可视化库,主要用于绘制有吸引力且信息丰富的统计图形,提供界面。该软件主要关注可视化,如热量地图。

Seaborn docs

3) MoviePy

https://pypi.org/project/moviepy/

MoviePy是用于视频编辑的Python库,可剪切、采集、插入标题、合成、处理视频以及创建自定义效果。软件可读写所有常见格式的音频和视频,包括GIF。

https://zulko.github.io/moviepy/gallery.html

4)Bonus NLP Tool — FuzzyWuzzy

>>> fuzz.ratio("this is a test", "this is a test!")
    97
>>> fuzz.partial_ratio("this is a test", "this is a test!")
    100
>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    91
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a
 bear")
    100


作者:读芯术

链接:https://juejin.im/post/5d97f40ee51d457806260eda

来源:掘金

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

分享好友

分享这个小栈给你的朋友们,一起进步吧。

猿,妙不可言
创建时间:2019-07-05 22:23:45
分享python,及前端一些开发心得、教程。 希望能和各位大佬交朋友~
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

栈主、嘉宾

查看更多
  • 马国栋
    栈主

小栈成员

查看更多
  • ?
  • 栈栈
  • gamebus
  • 呵呵哒
戳我,来吐槽~