绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
Python机器学习·微教程
2020-06-19 09:53:58

Python目前是机器学习领域增长快速的编程语言之一。

该教程共分为11小节。在这个教程里,你将学会:

  • 如何处理数据集,并构建的预测模型
  • 使用Python完成真实的机器学习项目

这是一个非常简洁且实用的教程,希望你能收藏,以备后面复习!

接下来进入正题~

这个微课程适合谁学习?

开始之前,要搞清楚该教程是否属于你的菜。

如果你不符合以下几点,也没关系,只要花点额外时间搞清楚知识盲点就能跟上。

  • 熟悉python语法,会写简单脚本。这意味着你在此之前接触过python,或者懂得其它编程语言,类C语言都是可以的。
  • 了解机器学习的基本概念。基本概念包括知道什么是监督学习、非监督学习、分类和预测的区别、交叉验证、简单算法。不要被这些吓到了,并非要求你是个机器学习专家,只是你要知道如何查找并学习使用。

所以这个教程既不是python入门,也不是机器学习入门。而是引导你从一个机器学习初级开发者,到能够基于python生态开展机器学习项目的专业开发者。

教程目录

该教程分为12节

第1节:下载并安装python及Scipy生态

第2节:熟悉使用python、numpy、matplotlib和pandas

第3节:加载CSV数据

第4节:对数据进行描述性统计分析

第5节:对数据进行可视化分析

第6节:数据预处理

第7节:通过重采样进行算法评估

第8节:模型比较和选择

第9节:通过算法调整提高模型精度

第10节:通过集合预测提高模型精度

第11节:完善并保存模型

希望大家在学习的过程中能够自主寻找解决困难的办法,网上资源很丰富,这也是自我提升很关键的一步。当然也可以在评论区留言哦!

第1节:下载并安装python及Scipy生态

这一节内容比较简单,你需要下载python3.6并安装在你的系统里,我用的win10系统。

接着要安装Scipy生态和scikit-learn库,这里推荐使用pip安装。

简单介绍一下Scipy,Scipy是一个基于python的数学、科学和工程软件开源生态系统。包含一些核心库:numpy、scipy、pandas、matplotlib、ipython、sympy

如果你不想这么麻烦,那么也可以使用傻瓜式一条龙安装-Anaconda,这里面预装了python及一百多个库。

安装好后,就可以在命令行键入“python”,就可以运行python了。

看一下python及各个库的版本:

# Python version
import sys
print('Python: {}'.format(sys.version))
# scipy
import scipy
print('scipy: {}'.format(scipy.__version__))
# numpy
import numpy
print('numpy: {}'.format(numpy.__version__))
# matplotlib
import matplotlib
print('matplotlib: {}'.format(matplotlib.__version__))
# pandas
import pandas
print('pandas: {}'.format(pandas.__version__))
# scikit-learn
import sklearn
print('sklearn: {}'.format(sklearn.__version__))

如果没有报错,那么安装环节就成功了。

第2节:熟悉使用python、numpy、matplotlib和pandas

步,你要能够读写python脚本。

python是一门区分大小写、使用#注释、用tab缩进表示代码块的语言。

这一小节目的在于练习python语法,以及在python环境下如何使用重要的Scipy生态工具。

包括:

  • 使用python列表
  • 使用numpy array数组操作
  • 使用matplotlib简单绘图
  • 使用pandas两种数据结构Series和DataFrame
# 导入各个库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

myarray = np.array([[1, 2, 3], [4, 5, 6]]) # 使用numpy数组
rownames = ['a', 'b']
colnames = ['one', 'two', 'three'] # 使用列表操作
mydataframe = pd.DataFrame(myarray, index=rownames, columns=colnames) #生成DataFrame
print(mydataframe)

mp = plt.plot(myarray) # 使用matplotlib绘制简单图表
plt.show() # 显示图像

第3节:加载CSV数据

机器学习算法需要有数据,这节讲解如何在python中正确地加载CSV数据集

有几种常用的方法供参考:

  • 使用标准库中CSV的CSV.reader()加载
  • 使用第三方库numpy中的numpy.loadtxt()加载
  • 使用第三方库pandas中的pandas.read_csv()加载

这里使用pandas来加载数据集,数据集使用网上数据Pima Indians onset of diabetes,你也可以使用本地数据练习

# Load CSV using Pandas from URL
import pandas # 导入pandas库
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = pandas.read_csv(url, names=names) # 读取数据
print(data.head(5)) # 打印数据集前5行

第4节:对数据进行描述性统计分析

导入数据后,步要做的是理解数据。

对数据理解的越透彻,建立的模型也会越。这里就要提到描述性统计分析,主要包括数据的频数分析、集中趋势分析、离散程度分析、分布以及一些基本的统计图形。

有以下几点操作:

  • 使用head()和tail()函数查看数据样本
  • 使用shape属性查看数据规格
  • 使用d*属性查看每个变量的数据类型
  • 使用describe()函数查看数据描述
  • 使用corr()函数计算各个变量之间的相关性

依然使用pima数据集,接上一节读取数据后:

# Load CSV using Pandas from URL
import pandas # 导入pandas库
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = pandas.read_csv(url, names=names) # 读取数据

head_5 = data.head(5) # 查看前5行
print(head_5)
tail_5 = data.tail(5) # 查看后5行
print(tail_5)
shape_ = data.shape # 查看数据规格,即多少行多少列
print(shape)
d*_ = data.d* # 查看每个变量的数据类型
print(d*_)
corr_ = data.corr() # 查看各个变量之间的相关性 
print(corr_)
description = data.describe() # 查看数据描述
print(description)
数据描述结果

第5节:对数据进行可视化分析

仅仅是做描述性统计无法直观地理解数据,python提供了丰富的可视化工具,帮助展示数据。这一小节就是对上节数据集进行可视化描述,让你一目了然。

有以下几点操作:

  • 使用hist()方法创建每个变量的直方图
  • 使用plot(kind='box')方法创建每个变量的箱图
  • 使用plotting.scatter_matrix()方法创建矩阵散点图
# Load CSV using Pandas from URL
import pandas # 导入pandas库
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = pandas.read_csv(url, names=names) # 读取数据

import matplotlib.pyplot as plt # 导入绘图模块
data.hist() # 直方图
data.plot(kind='box') # 箱图
pd.plotting.scatter_matrix(data) # 矩阵散点图
plt.show() # 展示图表
直方图
箱图
矩阵散点图

第6节:数据预处理

在将数据用作机器学习模型之前,需要对数据的内容和结构做适当的调整,才能更好的适应模型。这就是数据预处理工作。

有一些方法技术可以用于数据预处理,比如:

  • 数据标准化。数据标准化是将数据按比例缩放,使之落入一个小的特定区间。有利于提升模型的收敛速度和模型精度。比较典型的标准化方法有min-max标准化、z-score 标准化、归一化
  • 数据二值化。特征二值化是对数值特征进行阈值处理以获得布尔值的过程,根据阈值将数据二值化(将特征值设置为0或1)大于阈值的值映射到1,而小于或等于阈值的值映射到0.默认阈值为0时,只有正值映射到1。方法有Binarizing等。
  • 分类数据连续化。通常,特征不是作为连续值给出的,而是文本字符串或者数字编码的类别。比如性别数据通常是["男", "女"]这样的数据, 可以编码成[1,2], 但是这种数据通常不是可以直接进入机器学习模型的。将这种分类数据进行连续化的方法的就是one-hot-encoding
  • 估算缺失的值。由于各种原因,许多真实世界的数据集包含缺失值,通常编码为空白,NaN或其他占位符。然而,这样的数据集与scikit-learn估计器不兼容,它们假定数组中的所有值都是数值的,并且都具有并保持含义。使用不完整数据集的基本策略是放弃包含缺失值的整个行和/或列。然而,这是以丢失可能有价值的数据为代价的(尽管不完整)。更好的策略是推算缺失值,即从数据的已知部分推断它们。

上面提到的数据预处理技术都可以通过scikit-learn提供的方法实现。

简单介绍下scikit-learn,scikit-learn拥有可以用于监督和无监督学习的方法,一般来说监督学习使用的更多。sklearn中的大部分函数可以归为估计器(Estimator)和转化器(Transformer)两类。

估计器(Estimator)其实就是模型,它用于对数据的预测或回归。基本上估计器都会有以下几个方法:

  • fit(x,y):传入数据以及标签即可训练模型,训练的时间和参数设置,数据集大小以及数据本身的特点有关
  • score(x,y)用于对模型的正确率进行评分(范围0-1)。但由于对在不同的问题下,评判模型优劣的的标准不限于简单的正确率,可能还包括召回率或者是查准率等其他的指标,特别是对于类别失衡的样本,准确率并不能很好的评估模型的优劣,因此在对模型进行评估时,不要轻易的被score的得分蒙蔽。
  • predict(x)用于对数据的预测,它接受输入,并输出预测标签,输出的格式为numpy数组。我们通常使用这个方法返回测试的结果,再将这个结果用于评估模型。

转化器(Transformer)用于对数据的处理,例如标准化、降维以及特征选择等等。同与估计器的使用方法类似:

  • fit(x,y):该方法接受输入和标签,计算出数据变换的方式。
  • transform(x):根据已经计算出的变换方式,返回对输入数据x变换后的结果(不改变x)
  • fit_transform(x,y) :该方法在计算出数据变换方式之后对输入x就地转换。

列如,我要对数据集进行标准化处理,用到scikit-learn库中的StandardScaler()函数,那么先要用该函数的fit()方法,计算出数据转换的方式,再用transform()方法根据已经计算出的变换方式,返回对输入数据x标准化变换后的结果。

# 标准化数据 (0 mean, 1 stdev)
from sklearn.preprocessing import StandardScaler # 导入标准化函数
import pandas
import numpy
# 读取数据
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = pandas.read_csv(url, names=names)
array = dataframe.values
# 将数据分割为输入和响应两部分,即X和Y
X = array[:,0:8]
Y = array[:,8]
# 对数据进行标准化处理
scaler = StandardScaler().fit(X)
rescaledX = scaler.transform(X)
# summarize transformed data
numpy.set_printoptions(precision=3)
print(rescaledX[0:5,:])

第7节:通过重采样方法进行算法评估

用于训练模型的数据集称为训练集,但如何评估训练出来的模型的准确度呢?显然不能再用训练集,否则既是裁判又是运动员。

所以,需要一个新的数据集用于验证模型的准确度,新数据的获取就需要用到重采样方法了。重采样可以将数据集切分为训练集和验证集两个数据,前者用于训练模型,后者用于评估模型。

验证数据取自训练数据,但不参与训练,这样可以相对客观的评估模型对于训练集之外数据的匹配程度。

模型在验证数据中的评估常用的是交叉验证,又称循环验证。它将原始数据分成K组(K-Fold),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型。这K个模型分别在验证集中评估结果,后的误差MSE(Mean Squared Error)加和平均就得到交叉验证误差。

交叉验证有效利用了有限的数据,并且评估结果能够尽可能接近模型在测试集上的表现,可以做为模型优化的指标使用。

后要通过某种评估规则计算出模型准确度的分数,这里提供了cross_val_score(scoring='')函数评估交叉验证结果,其中参数scoring代表评估规则。评估规则有很多种,针对回归和分类,有不同的选择,比如:

这一节要做的是:

  • 将数据集切分为训练集和验证集
  • 使用k折交叉验证估算算法的准确性
  • 使用cross_val_score()函数评估交叉验证结果,输出k折交叉验证准确度评分
# 使用交叉验证评估模型
from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
# 加载数据
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(url, names=names)
array = dataframe.values
X = array[:,0:8]
Y = array[:,8]
# 使用k折交叉验证,n-split就是K值,shuffle指是否对数据洗牌,random_state为随机种子
kfold = KFold(n_splits=10,shuffle = True, random_state=7)
# 使用逻辑回归模型,这是一个分类算法
model = LogisticRegression(solver='liblinear')
# 交叉验证,cv代表交叉验证生成器,这里是k折,scoring代表评估规则,输出模型对于10个验证数据集准确度的评估结果
results = cross_val_score(model, X, Y, cv=kfold,scoring='neg_mean_squared_error')
# 打印这10个结果的平均值和标准差
print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()*100.0, results.std()*100.0)

未完待续

参考:machinelearningmastery

分享好友

分享这个小栈给你的朋友们,一起进步吧。

人生苦短,不如学Python
创建时间:2020-06-18 16:48:21
Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

技术专家

查看更多
  • liuxuhui
    专家
戳我,来吐槽~