Word Break
Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
For example, given
s = "leetcode"
,
dict = ["leet", "code"]
.
Return true because "leetcode"
can be segmented as "leet code"
.
解题思路:
解法1,回溯法。但会超时。其时间复杂度为len!
class Solution { public: bool wordBreak(string s, unordered_set<string>& wordDict) { return helper(s, wordDict); } bool helper(string s, unordered_set<string>& wordDict){ if(s==""){ return true; } int len = s.length(); for(int i=1; i<=len; i++){ if(wordDict.find(s.substr(0, i))!=wordDict.end() && helper(s.substr(i), wordDict)){ return true; } } return false; } };
解法2,动态规划。对于d[i]表示字符串S[0,..., i]费否能够被字典拼接而成。于是有
d[i] = true, 如果s[0,...i]在字典里面
d[i] = true, 如果存在k,0<k<i,且d[k]=true,s[k+1, .., i]在字典里面
d[i] = false, 不存在这样的k
代码如下:
class Solution { public: bool wordBreak(string s, unordered_set<string>& wordDict) { int len = s.length(); if(len == 0){ return true; } bool d[len]; memset(d, 0, len * sizeof(bool)); if(wordDict.find(s.substr(0, 1)) == wordDict.end()){ d[0] = false; }else{ d[0] = true; } for(int i=1; i<len; i++){ for(int k=0; k<i; k++){ d[i] = wordDict.find(s.substr(0, i+1))!=wordDict.end() || d[k] && (wordDict.find(s.substr(k+1, i-k))!=wordDict.end()); if(d[i]){ break; } } } return d[len-1]; } };
时间复杂度为O(len^2)
另外,一个非常好的解法就是添加一个字符在s前面,使得代码更加简洁。
class Solution { public: bool wordBreak(string s, unordered_set<string>& wordDict) { s = "#" + s; int len = s.length(); bool d[len]; memset(d, 0, len * sizeof(bool)); d[0] = true; for(int i=1; i<len; i++){ for(int k=0; k<i; k++){ d[i] = d[k] && (wordDict.find(s.substr(k+1, i-k))!=wordDict.end()); if(d[i]){ break; } } } return d[len-1]; } };