绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
高等数学——积分中值定理
2020-04-20 14:44:55

今天是高等数学专题的第12篇,我们继续来看定积分。

之前在讲微分求导内容的时候,介绍过一系列微分中值定理的推导。既然有微分中值定理,那么自然也有积分中值定理,我们下面就来看看积分中值定理的定义。


极值定理

极值定理也叫大小值定理,它的含义非常直观:如果函数f(x)在区间[a,b]上连续的函数,必然存在大值和小值,并且取到大值和小值至少一次。

这是一个非常有名的定理,定理的内容很直观,也不难理解。但是证明它不太容易,是由区间套定理与B-M定理等多个定理推导得到的,这段证明过程比较复杂,由于篇幅和水平的限制,本文当中只能跳过这部分,感兴趣的同学可以自行了解。

我们假设m和M分别是区间[a, b]上函数f(x)的小值和大值,那么根据极值定理,可以得到以下式子成立:

这个式子光看可能会觉得有些复杂,但是我们把图画出来之后非常简单:
上图当中灰色阴影部分就是定积分的结果,蓝色的矩形面积是m(b-a),大的矩形面积是M(b-a)。
通过几何面积的关系我们可以很容易证明结论。
数学证明也很简单,由于m和M分别是小值和大值,所以我们可以得到。我们把常数也看成是函数,进行积分,于是可以得到:

两边积分的结果就是矩形面积,于是我们就得到了证明。

积分中值定理

极值定理非常简单,但是是很多定理的基础,比如我们的积分中值定理就和它密切相关。
我们对上面的式子做一个简单的变形,由于b-a是常数并且大于0,所以我们在

这个不等式两边同时除以b-a,可以得到:
我们把这个式子看成一个整体,它的值位于函数在区间的大值和小值之间。根据连续函数的介值定理,我们一定可以在[a, b]上找到一点,使得f(x)在这点的取值与这个数值相等,也就是说:

上面这个式子就是积分中值定理了,这里有两点要注意,我们先来说简单的一点,就是我们用到了连续函数介值定理。所以限定了这必须是一个连续函数,否则的话,可能刚好函数在点处没有定义。这个也是定理成立的先决条件。
第二点是简单介绍一下连续函数的介值定理,它的含义是说对于一个在区间[a, b]上连续的函数,对于任一在其大值和小值之间的常数,我们必然可以在区间[a, b]上找到一点,使得该点的函数值等于这个常数。
搞明白这些细节之后,我们再来看刚才的式子:

我们再把常数乘回来:

右边的积分算的是什么,算的是函数围成的曲形的面积,但是现在我们转化成了一个函数值乘上了宽,所以我们可以把它看成是矩形的高,我们来看下下面这张图。
也就是说以为高的矩形面积和函数围成的曲形面积相等,所以它既是矩形的高,也真的是函数在[a, b]上的平均值。

总结

中值定理是微积分领域当中重要的定理,几乎没有之一,也是整个微积分搭建起来的脉络。我们熟悉中值定理的推导过程,对于我们对加深对于微积分的理解非常有帮助。更重要的一点是,相对来说,这两个定理的推导过程都不是很难,而且还蛮有意思的,所以推荐大家都亲自上手试一试。
分享好友

分享这个小栈给你的朋友们,一起进步吧。

TechFlow
创建时间:2020-03-19 11:13:43
机器学习、算法与数据结构、大数据相关和Python。 从纯基础开始的算法领域入门以及进阶内容。
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

栈主、嘉宾

查看更多
  • chengycz
    栈主

小栈成员

查看更多
  • 兔子爱喝红茶
  • 小雨滴
  • ittttliu
  • 栈栈
戳我,来吐槽~