绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
JavaScript 图像压缩
2023-01-11 15:25:42

JavaScript 可以使用类似于 canvas 和 web workers 来实现图像压缩。

使用 canvas,可以将图像绘制到 canvas 上,然后使用 canvas 提供的 toBlob() 或 toDataURL() 方法将其转换为不同格式的图像。在这些方法中指定图像质量参数即可实现压缩。

使用 web workers,可以在后台执行图像压缩,以避免阻塞 UI 线程。

但是 javascript 因为安全限制,不能操作本地文件,所以一般使用在浏览器端上传图片,使用js进行压缩处理,上传到服务端,后续处理。

在 JavaScript 中进行图像压缩有一些第三方库可供使用,比如:

  • canvas-toBlob.js: 在不支持 toBlob() 的浏览器中提供对 toBlob() 的支持。
  • lwip: 一个 JavaScript 的图像处理库,可以实现图像的压缩,旋转,裁剪等操作
  • browser-image-resizer: 基于 canvas 和 web workers 的 JavaScript 图像压缩库。
  • jpeg-js: 使用 JavaScript 实现的 JPEG 压缩库,可以在浏览器或 Node.js 环境中使用。

使用这些库进行压缩时需要注意的是,它们在性能上可能有所限制。对于大型图像,压缩可能需要相当长的时间。可能需要在用户上传图像时显示加载条或消息,以提醒用户正在进行压缩。

一、简单压缩

使用 JavaScript 和 canvas 压缩图像可以使用 canvas 的 drawImage() 方法将图像绘制到 canvas 上,然后使用 toDataURL() 方法将图像转换为 Data URL 形式。Data URL 是一种将数据嵌入 URL 的格式,可以在不需要网络请求的情况下直接在浏览器中加载图像。

在调用 toDataURL() 方法时,可以使用第二个参数来指定图像质量。该参数的值应该在 0 到 1 之间,表示图像质量的百分比。0 表示低质量,1 表示高质量。

这是一个使用 canvas 和 JavaScript 压缩图像的示例代码:

// 获取 canvas 元素
var canvas = document.getElementById('canvas');
var ctx = canvas.getContext('2d');

// 创建 Image 对象
var img = new Image();
img.src = 'image.jpg';
img.onload = function() {
  // 绘制图像到 canvas
  canvas.width = img.width;
  canvas.height = img.height;
  ctx.drawImage(img, , , img.width, img.height);
  
  // 使用 toDataURL 方法压缩图像
  var dataUrl = canvas.toDataURL('image/jpeg', 0.5);
  
  // 使用新的 Data URL 更新图像
  img.src = dataUrl;
}

这个例子中,图片会使用 jpeg 格式压缩,质量为50%,压缩后的图片会被重新赋值回img.src里,可以改变其他参数得到不同的压缩效果

二、使用canvas 将base64 图像压缩到指定文件大小以内

1、 方法一

首先使用 atob() 函数将 base64 图像数据解码为二进制字符串,然后创建一个新的 Blob 对象,并使用 FileReader 读取 Blob 对象。

接下来,使用 canvas 的 drawImage() 方法将图像绘制到 canvas 上,并使用 canvas.toBlob() 方法将图像转换为 Blob 对象。

后,检查生成的 Blob 的大小是否超过指定的大大小。 如果超过,使用不同的图像质量再次压缩图像,直到它的大小小于给定的大大小为止.

下面是一个示例代码:

var maxSize = 100 * 1024; // 大文件大小为100KB
var img = new Image();
img.src = base64Image;
img.onload = function () {
    var canvas = document.createElement('canvas');
    var ctx = canvas.getContext('2d');
    var width = img.width;
    var height = img.height;
    canvas.width = width;
    canvas.height = height;
    ctx.drawImage(img, , , width, height);
    var quality = 0.8;
    var resultBlob;
    do {
        canvas.toBlob(function (blob) {
            resultBlob = blob;
        }, 'image/jpeg', quality);
        quality -= 0.1;
    } while (resultBlob.size > maxSize && quality > 0.1);
    // do something with resultBlob, like create a new image from it or save it.
}

这个示例代码使用 canvas 将 base64 图像压缩到指定的大文件大小以内。它使用了一个 do-while 循环来不断地减小图像质量直到图像的文件大小符合限制为止。后它生成了一个 resultBlob 对象,它可以被用来更新页面上的图像或者存储到服务器上。

值得注意的是,这个示例代码中进行图像压缩时的质量是每次减少0.1,如果压缩后的图像的文件大小仍然超出限制,可能需要调整这个减少量,或者考虑其他压缩策略,比如更改图像的分辨率等。在这个例子中压缩文件大小是每次只减少0.1,这样可能会花费很长时间,在实际应用中需要根据需求来进行调整。
 
2.、方法二

递归方式可避免循环导致压缩处理过程中,页面提示无法显示的问题

// 计算base64编码图片大小
function getBase64ImageSize(base64) {
    const indexBase64 = base64.indexOf('base64,');
    if (indexBase64 < ) return -1;
    const str = base64.substr(indexBase64 + 6);
    // 大小单位:字节
    return (str.length * 0.75).toFixed(2);
}

/**
 * 	图像压缩,默认同比例压缩
 * @param {Object} imgPath
 *	图像base64编码字符串或图像可访问路径
 * @param {Object} obj
 *	obj 对象 有 width, height, quality(0-1)
 * @param {Object} maxSize
 *	指定压缩后的文件大小,单位:字节
 * @param {Object} callback
 *	回调函数有一个参数,base64的字符串数据
 */
function compressedImage(path, obj, maxSize, callback) {
    let img = new Image();
    img.src = imgPath;
    img.onload = function () {
        const that = this;
        // 默认按比例压缩
        let w = that.width,
            h = that.height,
            scale = w / h;
        w = obj.width || w;
        h = obj.height && obj.height * (w / scale) || h;
        // 生成canvas
        let canvas = document.createElement('canvas');
        let ctx = canvas.getContext('2d');

        canvas.width = w;
        canvas.height = h;

        ctx.drawImage(that, , , w, h);
        // 图像质量,默认图片质量为0.8
        let quality = 0.8;
        if (obj.quality && obj.quality >  && obj.quality <= 1) {
            quality = obj.quality;
        }
        // quality值越小,所绘制出的图像越模糊
        let newBase64Image = canvas.toDataURL('image/jpeg', quality);

        let fileSize = getBase64ImageSize(newBase64Image);
        if (fileSize > maxSize && quality > 0.01) {
            if (quality > 0.05) {
                quality = quality - 0.05;
            } else {
                quality = 0.01;
            }
            compressedImage(imgPath, {
                quality: quality
            }, maxSize, callback);
            return;
        }

        // 回调函数返回压缩后的 base64图像
        callback(newBase64Image);
    }
}

三、使用 canvas 和 web workers 来实现图像压缩

JavaScript 的 Web Workers API 允许在浏览器中创建多个线程,可以在后台线程中执行 JavaScript 代码,而不会影响主线程的响应性。因此,可以使用 Web Workers 来执行计算密集型任务,例如图像压缩。

下面是一个简单的示例代码,展示了如何使用 Web Workers 在后台线程中执行图像压缩:

// 在主线程中
var worker = new Worker('worker.js');
worker.onmessage = function(e) {
    var compressedImage = e.data;
    // do something with compressedImage
};
worker.postMessage({
    image: base64Image,
    maxSize: 100 * 1024 // 大文件大小为100KB
});

 

// worker.js
self.onmessage = function(e) {
    var image = e.data.image;
    var maxSize = e.data.maxSize;
    var img = new Image();
    img.src = image;
    img.onload = function() {
        var canvas = document.createElement('canvas');
        var ctx = canvas.getContext('2d');
        var width = img.width;
        var height = img.height;
        canvas.width = width;
        canvas.height = height;
        ctx.drawImage(img, , , width, height);
        var quality = 0.8;
        var resultBlob;
        do {
            canvas.toBlob(function(blob) {
                resultBlob = blob;
                self.postMessage(resultBlob);
            }, 'image/jpeg', quality);
            quality -= 0.1;
        } while (resultBlob.size > maxSize && quality > 0.1);
    }
};

这个示例代码中,在主线程中通过创建一个 Worker 对象并加载一个 worker.js 文件来启动一个后台线程. 在 worker.js 中,我们在 onmessage 中定义了图像压缩的逻辑,并使用 postMessage 来将压缩后的图像发送回主线程。这样做的优点在于,将图像压缩的计算密集型任务放到了后台线程中进行,可以保证主线程的响应性不会受到影响。这样能够避免因为计算密集型任务而导致页面卡顿或延迟。

需要注意的是,Web Workers 不能直接访问 DOM,所以需要使用 postMessage 在主线程和后台线程之间传递数据。

这只是一个简单的示例,实际应用中可能需要根据需求进行更多的定制。

分享好友

分享这个小栈给你的朋友们,一起进步吧。

趣谈前端
创建时间:2020-07-15 17:32:01
一个重度代码洁癖者,有对前端生态的总结,思考和探索。内容涵盖了笔者多年对vue,react,node,webpack以及javascript框架设计的探索和经验。公众号 - 趣谈前端
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

栈主、嘉宾

查看更多
  • xujiang
    栈主

小栈成员

查看更多
  • ?
  • victoria_ltt
  • asdjlk1
  • LCR_
戳我,来吐槽~