绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
不用ES也能海量数据复杂查询秒回
2020-05-18 17:36:38

面对海量数据复杂查询场景,目前的主流选择是HBase搭配ElasticSearch或者直接用ElasitcSearch实现,本文提出一个新的解决方案,基于HBase实现更加轻量,无需增加硬件投入,我们将这个核心组件命名为Pharos(灯塔)。




自研背景


可插拔的HBase索引组件


NoSQL兴起无疑是大数据时代的标志性事件,创新者们不断打破关系型数据库“一种存储模式解决所有问题”的思路,发明了很多不同的产品应对细分的数据访问模式,它们提供了更好的服务特性,比如低延时、高并发等等。HBase是其中极具代表性的产品,作为Hadoop生态体系的明星产品,时至今日已在很多企业得到广泛应用。


NoSQL这种为特定的数据使用模式设计存储系统的思路,收获了性能的大幅提升,但随着存储数据量的激增,对解决方案整体性价比的满意度却在不断走低。毕竟,相较几个TB和数百TB,存储成本对用户的冲击力是不同的,人们总是不满于线性增长的成本,希望能花更少的钱做更多的事。


通过适度拓展数据访问模式提升性价比,成为业内很多技术方案追求的目标。


光大银行是金融行业中较早引入HBase的,经过若干年建设已经积累了大量数据。如果仅是为了满足不同条件的查询,就copy一个同等规模的集群,是各方都难以接受的。


HBase作为一种KV数据库,数据访问模式以主键为核心,当面对非主键查询时,其原生解决方案Filter无法满足大多数联机应用的性能需求。所以,很多基于HBase的二级索引方案都在尝试应对复杂查询场景的需求。


Pharos是基于HBase的技术中间件,研究起点同样是二级索引,致力于提升多条件复杂查询的性能,应用在海量数据低延时复杂查询场景。




构建思路


三种二级索引方案的选型与分析


在启动研发工作前,我们对现存的二级索引方案进行了分析,除原生Filter外大致可以分为三种。



Elastic Search + HBase


这个方案流行度高,在ES中存储索引信息,HBase存储数据本身,两者协同完成索引查询。方案的优点是组合成熟产品,实施难度低;但缺点也有很多,首先是整体架构复杂、设备投入增加、运维成本高;其次是性能相对较低,每一次索引查询,都要先访问ES获得匹配的索引后,再访问HBase读取数据内容,查询链路延长,带来更多的网络开销;后是开发技能要求较高,程序员必须熟悉ES和HBase两种产品接口。 



Phoenix


Phoenix无疑是一款的开源产品,产品的理念是Put the SQL back in NoSQL。产品成熟,Apache社区背书,都是该方案的优势。


但因为目标高远,Phoenix的体量也偏重,这样在没有商业厂商支持下,运维难度很高(2019年Cloudera宣布支持Phoenix后,可能会有所改善)。第二点,对SQL的支持成为它的核心目标,但在很多查询场景中,SQL并非不可替代,高性能才是首要目标,性能却是Phoenix尚待改进的地方。Phoenix在整体机制上,并没有实现完善的索引下推,很多情况下索引查询需要从客户端发起两次与服务端的交互,次获得匹配的索引信息,第二次才是匹配的数据,这无疑带来了性能损耗。



云厂商方案


在云计算时代,HBase已经成为云服务的标配,部分公有云也提供了二级索引功能。这个方案的优点当然是厂商的一站式服务,运维成本极低。缺点首先是部分企业因为安全因素无法使用公有云,例如金融行业;其次在于技术方案本身,例如阿里的HBase二级索引,其内核依然是Elastic与HBase的组合,虽然接口上进行封装降低了开发难度,但架构带来的性能损耗依旧存在。


通过上述的分析,我们发现这些方案都不能满足光大银行的应用场景,因此我们决定自研产品。


我们将产品命名为Pharos,源自英文单词 [Pharos],其含义是灯塔。这个名称有两层含义:


  • 层是词义本身,灯塔对夜行的船只进行指引保证其安全地出入港口。而索引指向符合条件的数据地址,用于提升每次查数据访问操作的效率,两者有神似之处;

  • 第二层含义,Pharos初是指代亚历山大灯塔,这也是世界上座灯塔。而Pharos是光大银行尝试自研基础产品,我们希望这个命名能够激励团队,做出有开创意义的产品。




设计目标


低延时,架构简单,非侵入性


在Pharos设计目标中重要的有三点:


  1. 低延时:我们希望未来Pharos的应用场景不仅限于数据查询分析,也能够嵌入到业务交易系统中,这样低延时就是一个刚性需求;

  2. 架构简单:这样开发人员可以很容易上手使用,而运维的成本也很低;

  3. 非侵入性:是指对HBase的侵入,事实上除了前述分析的二级索引方案外,还有一些小众的二级索引方案是直接对HBase进行改造,但这种侵入式改造带来了后续的版本维护问题,考虑到多数企业不可能维护独立的HBase版本分支,我们的方案直接排除了这种技术路线,必须是对HBase非侵入的。



Pharos的研发是从2018年开始的,相对于目前的产品成熟度来说研发过程显得有点长,主要原因是开发人力投入相对较小。我们希望随着产品的应用推广,能扩充人员,加快产品的演进速度。


研发过程,我们受到了很多同类产品的启发,包括Phoenix、华为与360等公司的二级索引方案,也借鉴了很多好的设计方法,这里要特别致敬一下。




设计要点


四大关键设计的权衡


前面讲了Pharos的外部特性,接下来我会着重讲一些关键设计时的tradeoff,希望对大家的研发工作有所帮助。



存储策略


HBase是没有索引概念的,我们首先要解决的是如何存储索引。


Pharos采用的方式是在数据表增加一个“独立列族”用于存储索引信息,利用列族对应独立文件的特点,形成独立的索引文件,不会直接受到原始数据量的影响,降低磁盘I/O开销。这个设计另一个好处在于,索引与数据同分布,不必干预HBase的Region分布策略。后续的所有设计都是在同Region基础上,这大大简化了实现的复杂度。



这种索引与数据同分布的模式,可以简称为“分区索引”;而索引与数据各自存储的方式,则成为“全局索引”。“全局索引”的缺点在于无法完成索引查询的下推,优点是可以进行全局控制,例如索引。选择“分区索引”是因为我们期望实现低延时目标,当然同时也就放弃了对“索引”的支持,至少目前是不支持的。



存储模型


索引记录的Key部分,开始是Region头信息,保证与数据的同分布,而后是被索引字段的信息,接下来是存储索引名称等信息,数据记录的Key则被拼接为尾部信息;value部分则存储反序列化的元数据。



可以看到,这样设计的优点是索引检索速度快,存储成本也比较小。所以,当查询条件较复杂需要建立多个索引时,整体存储成本依然是可接受的。



分页机制


传统的后台分页方法是由应用服务记录每页的末尾记录主键,这个主键通常是由数据库提供的row number,数据库本身并不感知分页动作。对于分布式存储的HBase,每个Region都可能存在分页断点,如果延续该思路,应用端要记录大量断点信息,不仅增加传输数据量,也增大了开发的难度。在Pharos的设计中,我们通过Client作为汇聚点,缓存每个Region的断点信息,在Pharos的Client中增加Session概念,应用端仅需持有Session ID即可顺利完成翻页操作。




索引与数据的事务一致性(实验版本)


根据Pharos的存储设计,我们可以知道索引实质上是与数据行前缀相同的另一行记录,保证索引与数据的一致性要使用跨行事务,但HBase本身不支持跨表、跨行事务,这就成为一个死结,也是几乎所有二级索引方案都不支持索引事务一致性的原因。


这个问题的解决比较复杂,所以我们先简单介绍下HBase内部机制。HBase采用LSM-Tree模型,在联机写入时,数据在日志和内存中各保留一份,两者通过MVCC与日志的协调机制可以保证事务一致性。我画了一张图来表示HBase 1.2.6的事务控制逻辑,具体如下:



HBase内部会监控WAL的异常,但在Coprocessor事件体系中并未开“回滚标志位”,第三方开发者也就无法回滚相关数据行。


按说,到这里问题已经无解了,不过某天恰好受到了Percolator事务模型的启发,找到了另一种解决问题的思路。既然无法在写入过程通过回滚控制异常情况,那我们可以延后在读取过程中来补充对异常的操作,也就是说在下一次查询操作中再次确认并维护索引的一致性。


具体处理过程是,在写入索引信息时,置事务标志位为“不确定”,数据行更新完成后,将该标志改为“成功”;如果出现回滚,则标志位保留“不确定”状态。查询操作中一旦发现“不确定”标志,则根据索引查找相应的数据行是否存在,如存在,则将该标志更新为“成功”。


我们用流程图来体现处理过程,如下图:



该方式付出的代价是写入时需要两次更新事务标志,相对于仅写入数据行(无索引)肯定增加了一些开销,在测试环境下我们发现损耗在15%左右,主要是指延时;在查询环节虽然存在确认索引事务的可能性,但因为其发生的概率极低,不会对查询产生实质性影响。




未来展望


彻底解决Region分裂问题


目前Pharos主要还是在内部使用场景中测试,收集需求和问题,近期我们会发布V0.3版本。新版本会推出一些让人激动的特性,主要仍是围绕查询性能的提升,推出Pharos自有的数据组织形式,提供更加丰富的查询加速手段,完成从二级索引组件到一个完整的技术中间件的演进。


其中,特别重要的一点是彻底解决了Region分裂问题,我要迫不及待地做个剧透。


Region分裂是HBase数据再平衡的手段,保证每个数据节点上的数据量分布大致平均,也会有一些打散热点的效果。但是,分裂机制却破坏了索引与数据的同分布,在同类方案中通常采用很重的更新操作来调整索引的位置,追随数据的分布情况。


这种方式显得过于笨拙,并且更新过程会影响整体方案的可用性。因此,Pharos在V0.22版本中是建议索引延后加载,这样在数据更新导致的重分布完成后再更新索引。


实际操作中,这种方式要重复读取数据文件,延长了整体数据加载周期,对运维操作来说不够友好。在V0.3中,我们加入了Pharos自有的数据组织方式,实现在Region分裂时维持索引的同分布效果。


考虑到篇幅的限制,就介绍到这里。几个月后,我会择机与大家分享在新版本的改进,使用了更多独创性的方法,敬请期待。



分享好友

分享这个小栈给你的朋友们,一起进步吧。

盗火的普罗米修斯
创建时间:2020-05-18 16:41:22
立足金融场景,聚焦于数据技术的普及和引导,以中立者身份对各项技术进行分析和横向比较。这里所指的数据技术包括数据分析和联机事务处理两个大的方向,涉及大数据、分布式等领域。
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

栈主、嘉宾

查看更多
  • 金融数士
    栈主

小栈成员

查看更多
  • ?
  • chenglinjava0501
  • Pantj
戳我,来吐槽~