绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
PostgreSql Postgresql 监控你说了不算,谁说了算 ? (5 整理的一些脚本)
2020-03-26 08:06:30

一写就写到了第五期,有点写连续剧的味道,可能会有第六期,我想是,今天的内容并不是某些工具,其实工具也是根据数据库的原理,通过各种方式获得数据。那怎么通过PG中的系统表来获得数据就是这期的重点。


当然只给脚本,那就有点LOW ,首先要告诉读者,这个到底要做什么能给你什么信息,解决什么问题。

以下的脚本均在PG11中使用,或验证。


1 内存命中 cache hit

关注这个点是因为,你系统中正在运行的表,在查询中内存的命中率,主要考虑这个点要考虑 1 内存是否存在短缺的可能, 2 你的查询的方式是否合理,(说白了就是你读取这个表的SQL 是否有垃圾的可能),一软一硬。

SELECT

'index hit rate' AS name,

(sum(idx_blks_hit)) / nullif(sum(idx_blks_hit + idx_blks_read),0) AS ratio

FROM pg_statio_user_indexes

UNION ALL

SELECT

'table hit rate' AS name,

sum(heap_blks_hit) / nullif(sum(heap_blks_hit) + sum(heap_blks_read),0) AS ratio

FROM pg_statio_user_tables;


2 关于表中的INDEX 的命中率

SELECT relname,

CASE idx_scan

WHEN 0 THEN NULL

ELSE round(100.0 * idx_scan / (seq_scan + idx_scan), 5)

END percent_of_times_index_used,

n_live_tup rows_in_table

FROM

pg_stat_user_tables

ORDER BY

n_live_tup DESC;


在查询中基本上都愿意使用INDEX 来进行相关的查询,那表中的查询使用INDEX 索引和不使用之间的时间比是多少,通过这样的脚本可以进一步分析哪些表可能存在缺少搜索的情况。


3  检查数据库中那些索引没有被使用过,这是一个经常需要问的问题,当然通过脚本获取的数据后,到底这个索引需要不需要,也是要在分析的,不能由于这个索引被使用的次数过小,就直接将他删除。

SELECT

schemaname || '.' || relname AS table,

indexrelname AS index,

pg_size_pretty(pg_relation_size(i.indexrelid)) AS index_size,

idx_scan as index_scans

FROM pg_stat_user_indexes ui

JOIN pg_index i ON ui.indexrelid = i.indexrelid

WHERE NOT indisunique

AND idx_scan < 50

AND pg_relation_size(relid) > 5 * 8192

ORDER BY pg_relation_size(i.indexrelid) / nullif(idx_scan, 0) DESC NULLS FIRST,

pg_relation_size(i.indexrelid) DESC;


4 一个表的大小,在PG中对于字符的字段是有一个toast 的概念的,要关注toast在每个表中占有多大的空间,可以通过下面的脚本来进行查看

SELECT c.relname AS name,

pg_size_pretty(pg_total_relation_size(c.oid)) AS size

FROM pg_class c

LEFT JOIN pg_namespace n ON (n.oid = c.relnamespace)

WHERE n.nspname NOT IN ('pg_catalog', 'information_schema')

AND n.nspname !~ '^pg_toast'

AND c.relkind='r'

ORDER BY pg_total_relation_size(c.oid) DESC;




5 查询当前系统中语句的状态,包含锁的状态,这个语句可能是会经常被使用的,如果当前系统例如出现性能,或应用系统的问题,首先就要查看当前语句运行的情况。
SELECT count(pg_stat_activity.pid) AS number_of_queries,
substring(trim(LEADING
FROM regexp_replace(pg_stat_activity.query, '[\n\r]+'::text,
' '::text, 'g'::text))
FROM 0
FOR 200) AS query_name,
max(age(CURRENT_TIMESTAMP, query_start)) AS max_wait_time,
wait_event,
usename,
locktype,
mode,
granted
FROM pg_stat_activity
LEFT JOIN pg_locks ON pg_stat_activity.pid = pg_locks.pid
WHERE query != '<IDLE>'
AND query NOT ILIKE '%pg_%' AND query NOT ILIKE '%application_name%' AND query NOT ILIKE '%inet%'
AND age(CURRENT_TIMESTAMP, query_start) > '5 milliseconds'::interval
GROUP BY query_name,
wait_event,
usename,
locktype,
mode,
granted
ORDER BY max_wait_time DESC;


6 在查询中表读取在内存中的命中的数据块是一个需要被关注的参数,下面的脚本中可以看到每个表被读取时,在磁盘中读取和在内存中直接读取之间的数字和比率。


SELECT relname AS "relation",
heap_blks_read AS heap_read,
heap_blks_hit AS heap_hit,
( (heap_blks_hit*100) / NULLIF((heap_blks_hit + heap_blks_read), 0)) AS ratio
FROM pg_statio_user_tables;


7 表膨胀的问题是PG中需要关注和注意的,所以经常监控膨胀率是一个很重要的问题,通过下面的脚本

WITH constants AS (

SELECT current_setting('block_size')::numeric AS bs, 23 AS hdr, 4 AS ma

), bloat_info AS (

SELECT

ma,bs,schemaname,tablename,

(datawidth+(hdr+ma-(case when hdr%ma=0 THEN ma ELSE hdr%ma END)))::numeric AS datahdr,

(maxfracsum*(nullhdr+ma-(case when nullhdr%ma=0 THEN ma ELSE nullhdr%ma END))) AS nullhdr2

FROM (

SELECT

schemaname, tablename, hdr, ma, bs,

SUM((1-null_frac)*avg_width) AS datawidth,

MAX(null_frac) AS maxfracsum,

hdr+(

SELECT 1+count(*)/8

FROM pg_stats s2

WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND s2.tablename = s.tablename

) AS nullhdr

FROM pg_stats s, constants

GROUP BY 1,2,3,4,5

) AS foo

), table_bloat AS (

SELECT

schemaname, tablename, cc.relpages, bs,

CEIL((cc.reltuples*((datahdr+ma-

(CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::float)) AS otta

FROM bloat_info

JOIN pg_class cc ON cc.relname = bloat_info.tablename

JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = bloat_info.schemaname AND nn.nspname <> 'information_schema'

), index_bloat AS (

SELECT

schemaname, tablename, bs,

COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages,

COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS iotta -- very rough approximation, assumes all cols

FROM bloat_info

JOIN pg_class cc ON cc.relname = bloat_info.tablename

JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = bloat_info.schemaname AND nn.nspname <> 'information_schema'

JOIN pg_index i ON indrelid = cc.oid

JOIN pg_class c2 ON c2.oid = i.indexrelid

)

SELECT

type, schemaname, object_name, bloat, pg_size_pretty(raw_waste) as waste

FROM

(SELECT

'table' as type,

schemaname,

tablename as object_name,

ROUND(CASE WHEN otta=0 THEN 0.0 ELSE table_bloat.relpages/otta::numeric END,1) AS bloat,

CASE WHEN relpages < otta THEN '0' ELSE (bs*(table_bloat.relpages-otta)::bigint)::bigint END AS raw_waste

FROM

table_bloat

UNION

SELECT

'index' as type,

schemaname,

tablename || '::' || iname as object_name,

ROUND(CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages/iotta::numeric END,1) AS bloat,

CASE WHEN ipages < iotta THEN '0' ELSE (bs*(ipages-iotta))::bigint END AS raw_waste

FROM

index_bloat) bloat_summary

ORDER BY raw_waste DESC, bloat DESC;



8 在PG 中一个数据块系统中有没有进行autovacuum 什么时候做的,后一次分析是什么时间,等等都是重要的信息,一个系统的管理或者DBA是需要知晓这些事情,并根据这些信息来进行后续的操作等等。

WITH table_opts AS (

SELECT

pg_class.oid, relname, nspname, array_to_string(reloptions, '') AS relopts

FROM

pg_class INNER JOIN pg_namespace ns ON relnamespace = ns.oid

), vacuum_settings AS (

SELECT

oid, relname, nspname,

CASE

WHEN relopts LIKE '%autovacuum_analyze_threshold%'

THEN substring(relopts, '.*autovacuum_analyze_threshold=([0-9.]+).*')::integer

ELSE current_setting('autovacuum_analyze_threshold')::integer

END AS autovacuum_analyze_threshold,

CASE

WHEN relopts LIKE '%autovacuum_analyze_scale_factor%'

THEN substring(relopts, '.*autovacuum_analyze_scale_factor=([0-9.]+).*')::real

ELSE current_setting('autovacuum_analyze_scale_factor')::real

END AS autovacuum_analyze_scale_factor

FROM

table_opts

)

SELECT

vacuum_settings.relname AS table,

to_char(psut.last_analyze, 'YYYY-MM-DD HH24:MI') AS last_analyze,

to_char(psut.last_autoanalyze, 'YYYY-MM-DD HH24:MI') AS last_autoanalyze,

to_char(pg_class.reltuples, '9G999G999G999') AS rowcount,

to_char(pg_class.reltuples / NULLIF(pg_class.relpages, 0), '999G999.99') AS rows_per_page,

to_char(autovacuum_analyze_threshold

+ (autovacuum_analyze_scale_factor::numeric * pg_class.reltuples), '9G999G999G999') AS autovacuum_analyze_threshold,

CASE

WHEN autovacuum_analyze_threshold + (autovacuum_analyze_scale_factor::numeric * pg_class.reltuples) < psut.n_dead_tup

THEN 'yes'

END AS will_analyze

FROM

pg_stat_user_tables psut INNER JOIN pg_class ON psut.relid = pg_class.oid

INNER JOIN vacuum_settings ON pg_class.oid = vacuum_settings.oid

ORDER BY 1


OK 今天就先说到这里


分享好友

分享这个小栈给你的朋友们,一起进步吧。

数据库杂货铺
创建时间:2021-12-10 09:57:47
分享数据库管理,运维,源代码 ,业界感受, 吐槽
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

栈主、嘉宾

查看更多
  • liuaustin
    栈主

小栈成员

查看更多
  • miemieMIA
  • 578154454
  • ylfxml
戳我,来吐槽~