那身为一名 Pythoner,有哪些技巧能让我们写出优雅的 Python 代码呢,今天就给大家介绍七个能快速提升代码逼格的重要技巧。
0x00 规范命名
没有哪个程序员会抗拒一段命名规范的代码!
命名作为编程界的一大难题,实属难倒了很多人。不知道你是否还记得自己那些曾经很沙雕的命名呢。
a,b,c x,y,z a1,a2 4_s,4s...
def do_something():
def fun():
...
相信你看到上面的命名也是一头雾水,好的命名不一定要写的多优雅,起码要做到见名识意。统一的命名风格可以让代码看起来更简洁,风格更统一,这样阅读者一看就知道这个变量或者函数是用来干嘛的,不至于猜半天浪费过多的精力在不必要的事情上。
0x01 面向对象
Python 是一门面向对象语言,因此我们有必要熟悉面向对象的一些设计原则。
单一职责原则是指一个函数只做一件事,不要将多个功能集中在同一个函数中,不要大而全,要小而精。这样,当有需求变化时,我们只需要修改对应的部分即可,程序应对变化的能力明显提升。
开放封闭原则是指对扩展开放,对修改关闭。
写程序的都知道,甲方是善变的,今天说用这种方式实现,明天可能就变卦了,这太正常了。所以我们写程序时一定要注意程序的可扩展性,当甲方改动需求时,我们尽可能的少改动或者不改动原有代码,而是通过添加新的实现类来扩展功能,这意味着你系统的原有功能是不会遭到破坏的,则稳定性有极大提升。
接口隔离原则是指调用方不应该依赖其不需要的接口,接口间的依赖关系应当建立在小功能接口原则之上。
单一职责和接口隔离都是为了提高类的内聚性,降低他们之间的耦合性。这是面向对象封装思想的完美体现。
0x02 使用 with
平时写代码难免会遇到操作文件的需求,一般都是用 open()
函数来打开一个文件,后等操作完成之后通过 close()
函数来关闭文件,但有时候写多了难免会觉得很麻烦,难道不可以在我操作完自动关闭文件么,可以的。使用 with 来操作文件无需考虑关闭问题,我们只需要关心核心的业务逻辑即可。
with open('tmp.txt', 'w') as f:
f.write('xxx')
...
0x03 使用 get
当我们从字典中获取一个不存在的 key 时,如果是用中括号的方式来获取的话程序会返回 KeyError
。这时候建议通过 get()
函数来获取。
同时通过 get()
函数来获取 value 时还可以设置默认值 default_value,当 key 不存在时则会返回 default_value。
0x04 提前返回
平时写的代码中少不了 if else 等控制语句,但有时候有的小伙伴喜欢将 if else 嵌套好多层,过几个月之后自己都看不明白当时写的啥。
比如下面这个程序,根据考试成绩来做评级。
score = 100
if score >= 60: # 及格
if score >= 70: # 中等
if score >= 80: # 良好
if score >= 90: #
if score >= 100: # 满分
print("满分")
else:
print("")
else:
print("良好")
else:
print("中等")
else:
print("及格")
else:
print("不及格")
print("程序结束")
这种代码一看就想打人有木有,可读性极差。
代码的逻辑就是判断分数是否在一个区间,然后给出与之相匹配的评级,既然如此,则可以改写如下:
def get_score_level(score):
if score >= 100: # 满分
print("满分")
return
if score >= 90: #
print("")
return
if score >= 80: # 良好
print("良好")
return
if score >= 70: # 中等
print("中等")
return
if score >= 60: # 及格
print("及格")
return
print("不及格")
print("程序结束")
这种处理方式是极其优雅的,从上往下清晰明了,大大增加了代码的可读性和可维护性。
0x05 生成器
我们都知道通过列表生成式可以直接创建一个新的列表,但受机器内存限制,列表的容量肯定是有限的。如果列表里面的数据是通过某种规律推导计算出来的,那是否可以在迭代过程中不断的推算出后面的元素呢,这样就不必一次性创建完整个列表,按需使用即可,这时候生成器就派上用场了。
0x06 装饰器
试想一下如下的场景,当后端接收到用户请求后,需要对用户进行鉴权,总不能将鉴权的代码复制来复制去吧;还有我们的项目都是需要记录日志的,这两种情况适合使用装饰器。事实上 Flask 框架中就大量使用装饰器来进行鉴权操作。
一切皆对象!
在 Python 中我们可以在函数中定义函数,也可以从函数中返回函数,还可以将函数作为参数传给另一个函数。
def hi(name="yasoob"):
print("now you are inside the hi() function")
def greet():
return "now you are in the greet() function"
def welcome():
return "now you are in the welcome() function"
print(greet())
print(welcome())
print("now you are back in the hi() function")
hi()
# output
# now you are inside the hi() function
# now you are in the greet() function
# now you are in the welcome() function
# now you are back in the hi() function
在上面的代码中,我们在 hi()
函数内部定义了两个新的函数,无论何时调用 hi()
其内部的函数都将会被调用。
def hi(name="yasoob"):
def greet():
return "now you are in the greet() function"
def welcome():
return "now you are in the welcome() function"
if name == "yasoob":
return greet
else:
return welcome
a = hi()
print(a)
print(a())
# output
# <function hi.<locals>.greet at 0x7fe3e547a0e0>
# now you are in the greet() function
在这个例子中,由于默认参数 name = yasoob
因此 a = hi()
返回的是 greet
函数。a 也就指向了 hi()
函数内部的 greet()
函数。
def hi():
return "hi yasoob!"
def doSomethingBeforeHi(func):
print("I am doing some boring work before executing hi()")
print(func())
doSomethingBeforeHi(hi)
# output
# I am doing some boring work before executing hi()
# hi yasoob!
在后这个例子中,我们将 hi()
函数传递给了另外一个函数,并且他们还很愉快的执行了。
现在,让我们来看看 Python 中的装饰器吧。
def a_new_decorator(a_func):
def wrapTheFunction():
print("I am doing some boring work before executing a_func()")
a_func()
print("I am doing some boring work after executing a_func()")
return wrapTheFunction
def a_function_requiring_decoration():
print("I am the function which needs some decoration to remove my foul smell")
a_new_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
a_new_function_requiring_decoration()
# output
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell
# I am doing some boring work after executing a_func()
看懂了没,就是上面我们介绍的基础操作的组合。事实上这就是 python 中的装饰器所做的事,通过这种方式来修改一个函数的行为。
但如果每次都这么写的话未免也太麻烦了吧,因此 python 为我们提供了一个便捷操作 @
。
def a_new_decorator(a_func):
...
@a_new_decorator
def a_function_requiring_decoration():
print("I am the function which needs some decoration to remove my foul smell")
a_function_requiring_decoration()
# output
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell
# I am doing some boring work after executing a_func()
总结
今天给大家介绍了几个重要的提升代码逼格的技巧,小伙伴们还有什么技巧可以在评论区交流哦~