作者:等不到的口琴
来源:www.cnblogs.com/Courage129/p/14427020.html
什么是服务降级
如果看过我前面对服务限流的分析,理解服务降级就很容易了,对于一个景区,平时随便进出,但是一到春节或者十一国庆这种情况客流量激增,那么景区会限制同时进去的人数,这叫限流,那么什么是服务降级呢?
简单来说就是,将一些不太重要的景区项目砍掉,平时就那么三五八个人,景区可以开放湖中游泳啦,摸鱼啦,捉虾啦,有情况工作人员可以下湖捞你,但是现在客流量大了,工作人员关注不过来,都在湖里晃荡万一沉了不太安全,大手一挥,这个项目砍了,将工作人员分配在其他地方。
在互联网中也有类似的降级措施,像之前双11, 有段时间是只允许下单不允许退单或者改单,这样做目的是什么呢?
还是为了保证服务的可用性,当硬件软件优化到一定的程度还是有上限,这时候将资源重点倾斜给核心业务,那些不太重要的就砍掉,保证服务的可用性。
服务等级定义
服务等级定义 SLA(Service Level Agreement)是判定压测是否异常的重要依据。压测过程中,通过监控核心服务状态的 SLA 指标数据,可以更直观地了解压测业务的状态。
SLA则是服务商与您达成的正常运行时间保证。
关于这个的详细解释,可以参考阿里云的介绍:服务等级定义SLA(https://help.aliyun.com/document_detail/111729.html),这儿不过多描述,SLA 分为网络服务和云服务,提供商的在线保证率通常要求达到6个9。
6个9含义
6个9指99.9999%,也就是一个服务有99.9999%概率是安全的,6个9有多安全呢?
2个9 = (1-99%)X24 X 365 = 87.6 小时 = 3.65天
3个9 = (1-99.9%)X24 X 365 = 8.76 小时
4个9 = (1-99.99%)X24 X 365 = 0.876 小时 = 52.56分钟
5个9 = (1-99.999%)X24 X 365 = 0.0876 小时 = 5.256分钟
6个9 = (1-99.9999%)X24 X 365 = 0.00876 小时 = 0.5256分钟 = 31秒
也就是,一年当中,6个9的安全性多会有31s服务是不可用,相对来说是极高的。
降级处理
兜底数据
这方面有很多例子,比如某些页面挂了会返回寻亲子网。可以对一些关键数据设置一些兜底数据,例如设置默认值、静态值、设置缓存等。
默认值: 设置安全的默认值,不会引起数据问题的值,比如库存为0
静态值:请求的页面或api无法返回数据,提供一套静态数据展示,比如加载失败提示重试,或者寻亲子网,或者跳到默认菜单,给用户一个稍微好一点的体验。
缓存: 缓存无法更新便使用旧的缓存
限流降级
限流顾名思义,提前对各个类型的请求设置高的QPS阈值,若高于设置的阈值则对该请求直接返回,不再调用后续资源,也就是当流量洪峰到达的时候,可能需要丢弃一部分用户来保证服务可用性,对于丢弃的用户可以提供友好的提示,比如提示用户当前繁忙、稍后重试等。
超时降级
对调用的数据设置超时时间,当调用失败时,对服务降级,举个例子,当访问数据已经超时了,且这个业务不是核心业务,可以在超时之后进行降级,比如商品详情页上有推荐内容或者评价,但是可以降级显示评价暂时不显示,这对主要的用户功能——购物,不产生影响,如果是远程调用,则可以商量一个双方都可以接受的大响应时间,超时则自动降级。
故障降级
如果远程调用的服务器挂了(网络故障、DNS故障、HTTP服务返回错误),则可以进行降级, 例如返回默认值或者兜底数据或者静态页面,也可以返回之前的缓存数据。
重试/自动处理
客户端高可用:提供多个可调用的服务地址,这样做
微服务重试:dubbo重试机制
API调用重试:当达到重试次数后,增加访问标记,服务降级,异步探测服务是否恢复。
WEB端:在服务不可用时,web端增加重试按钮或自动重试可以提供更友好的体验。
自动重试需设置重试次数和数据幂等处理
降级开关
在服务器提供支持期间, 如果监控到线上一些服务存在问题,这个时候需要暂时将这些服务去掉,有时候通过服务调用一些服务,但是服务依赖的数据库可能存在,网卡被打满了,数据库挂了,很多慢查询等等,此时要做的就是暂停相关的系统服务,也就是人工使用开关降级。开关可以放在某地,定期同步开关数据,通过判断开关值来决定是否做出降级。
开关降级还有一个作用,例如新的服务版本刚开发处在灰度测试阶段,不太确定里面的逻辑等等是否正确,如果有问题应该可以根据开关的值切回旧的版本。
在服务调用方设置一个flag,标记服务是否可用,另外key可以存储存储在在本地,也可以存储在第三方的配置文件中,例如数据库、redis、zookeeper中。
爬虫和机器人
分析机器人行为:短时间连续操作,agent,行为轨迹、拖拽(模拟登陆/秒杀/灌水)
读降级
简而言之,在一个请求内,多级缓存架构下,后端缓存或db不可用,可以使用前端缓存或兜底数据让用户体验好一点。
对于读服务降级一般采用的策略有:暂时切换读: 降级到读缓存、降级到走静态化暂时屏蔽读: 屏蔽读入口、屏蔽某个读服务
通常读的流程为: 接入层缓存→应用层本地缓存→分布式缓存→RPC服务/DB
我们会在接入层、应用层设置开关,当分布式缓存、RPC服务/DB有问题时自动降级为不调用。当然这种情况适用于对读一致性要求不高的场景。
页面降级、页面片段降级、页面异步请求降级都是读服务降级,目的是丢卒保帅,保护核心线程,或者因数据问题暂时屏蔽。
还有一种是页面静态化场景。
动态化降级为静态化:比如,平时网站可以走动态化渲染商品详情页,但是,到了大促来临之际可以将其切换为静态化来减少对核心资源的占用,而且可以提升性能。其他还有如列表页、首页、频道页都可以这么处理。可以通过一个程序定期推送静态页到缓存或者生成到磁盘,出问题时直接切过去。
静态化降级为动态化:比如,当使用静态化来实现商品详情页架构时,平时使用静态化来提供服务,但是,因为特殊原因静态化页面有问题了,需要暂时切换回动态化来保证服务正确性。以上都保证了出问题时有预案,用户可以继续使用网站,不影响用户购物体验。
写降级
大家都知道硬盘性能比不上内存性能,如果访问量很高的话,数据库频繁读写可能撑不住,那么怎么办呢,可以让内存(假如是Redis)库来暂时满足写任务,同时将执行的指令记录下来,然后将这个信息发送到数据库,也就是不在追求内存与数据库数据的强一致性,只要数据库数据与Redis数据库中的信息满足终话一致性即可。
还有如用户评价,如果评价量太大,那么也可以把评价从同步写降级为异步写。当然也可以对评价按钮进行按比例开放(比如,一些人看不到评价操作按钮)。比如,评价成功后会发一些奖励,在必要的时候降级同步到异步。
总结在cap原理和BASE理论中写操作存在于数据一致性这个环节,降级的目的是为了提供高可用性,在多数的互联网架构中,可用性是大于数据一致性的。所以丧失写入数据同步,通过上面的理论,我们也能勉强接受数据终一致性。高并发场景下,写入操作无法及时到达或抗压,可以异步消费数据/cache更新/log等方式
前端降级
当系统出现问题的时候,尽量将请求隔离在离用户近的位置,避免链路访问, 在后端服务部分或完全不可用的时候,可以使用本地缓存或兜底数据,在一些特殊场景下,对数据一致性要求不高的时候,比如秒杀、抽奖等可以做假数据。
JS降级
在js中埋降级开关,在访问不到达,系统阈值的时候可以避免发送请求
主要控制页面功能的降级,在页面中,通过JS脚本部署功能降级开关,在适当时机开启/关闭开关。
接入层降级
应用层降级
主要控制业务的降级,在应用中配置相应的功能开关,根据实际业务情况进行自动/人工降级。
SpringCloud中可以通过Hystrix配置中心可以进行人工降级,也可以根据服务的超时时间进行自动降级, Hystrix是Netflix开源的一款针对分布式系统的延迟和容错库,目的是用来隔离分布式服务故障。
它提供线程和信号量隔离,以减少不同服务之间资源竞争带来的相互影响;官网讲Hystrix提供优雅降级机制;提供熔断机制使得服务可以快速失败,而不是一直阻塞等待服务响应,并能从中快速恢复。Hystrix通过这些机制来阻止级联失败并保证系统弹性、可用。下图是一个典型的分布式服务实现。
片段降级
提前预埋
这个很容易理解,大家应该都记得,每次双十一之前,淘宝总会提醒你下载更新,按道理来讲,活动还没开始,更新啥呢?
感谢您的阅读,也欢迎您发表关于这篇文章的任何建议,关注我,技术不迷茫!小编到你上高速。