1 Overview
之前我们组在生产环境上部署的是 Spark 2.2 on k8s 的那个 fork,部署在 K8S 上,至少需要一个 Dockerfile,近有计划升级到 3.0.0 Snapshot 的分支代码上,借此,做个记录。
History Server => HS
2 Start
Spark 自2.3.0,之后就提供官方的 Dockerfile 了,可以基于生产环境的需求,自行 build。所以这里调研一下,Dockerfile 能否直接支持运行一个 HS 的进程。
贴个 Dockerfile 看看(删除了一些注释)。
FROM openjdk:8-alpine
ARG spark_uid=185
RUN set -ex && \
apk upgrade --no-cache && \
ln -s /lib /lib64 && \
apk add --no-cache bash tini libc6-compat linux-pam krb5 krb5-libs nss && \
mkdir -p /opt/spark && \
mkdir -p /opt/spark/examples && \
mkdir -p /opt/spark/work-dir && \
touch /opt/spark/RELEASE && \
rm /bin/sh && \
ln -sv /bin/bash /bin/sh && \
echo "auth required pam_wheel.so use_uid" >> /etc/pam.d/su && \
chgrp root /etc/passwd && chmod ug+rw /etc/passwd
COPY jars /opt/spark/jars
COPY bin /opt/spark/bin
COPY sbin /opt/spark/sbin
COPY kubernetes/dockerfiles/spark/entrypoint.sh /opt/
COPY examples /opt/spark/examples
COPY kubernetes/tests /opt/spark/tests
COPY data /opt/spark/data
ENV SPARK_HOME /opt/spark
WORKDIR /opt/spark/work-dir
RUN chmod g+w /opt/spark/work-dir
ENTRYPOINT [ "/opt/entrypoint.sh" ]
# Specify the User that the actual main process will run as
USER ${spark_uid}
看出来了,不论 Driver 还是 Executor,这个 Dockerfile 来跑什么,取决于后的脚本 entrypoint.sh。
再贴个 entrypoint.sh 的关键代 码。
case "$1" in
driver)
shift 1
CMD=(
"$SPARK_HOME/bin/spark-submit"
--conf "spark.driver.bindAddress=$SPARK_DRIVER_BIND_ADDRESS"
--deploy-mode client
"$@"
)
;;
executor)
shift 1
CMD=(
${JAVA_HOME}/bin/java
"${SPARK_EXECUTOR_JAVA_OPTS[@]}"
-Xms$SPARK_EXECUTOR_MEMORY
-Xmx$SPARK_EXECUTOR_MEMORY
-cp "$SPARK_CLASSPATH"
org.apache.spark.executor.CoarseGrainedExecutorBackend
--driver-url $SPARK_DRIVER_URL
--executor-id $SPARK_EXECUTOR_ID
--cores $SPARK_EXECUTOR_CORES
--app-id $SPARK_APPLICATION_ID
--hostname $SPARK_EXECUTOR_POD_IP
)
;;
*)
echo "Non-spark-on-k8s command provided, proceeding in pass-through mode..."
CMD=("$@")
;;
esac
注意到了,当运行这个 Dockerfile build 出来的容器的时候,需要输入一些参数,如果输入 driver
则运行的是一个 Driver 进程,如果是 executor
就是一个 Executor 进程。
那么如果想跑 HS 这样的进程服务的时候该怎么办呢?
显然后一个选项就是给兜底的,你可以运行 Spark 官方提供的 start-history-server.sh。
所以按照官方 build 完镜像之后可以试试。
./bin/docker-image-tool.sh -t v3.0.0 build
然后运行 start-history-server.sh,其实细看这个脚本文件,HS 是用 Daemon 的方式运行的,Docker 是不能直接跑后台进程的(这个说法可能有误,大概可以先这么理解)。而 HS 其实就是运行 org.apache.spark.deploy.history.HistoryServer
这个启动类,所以按照下面这个脚本跑吧。
docker run -it spark:v3.0.0 /opt/spark/bin/spark-class org.apache.spark.deploy.history.HistoryServer
然后你就会看到报错了....
➜ spark git:(master) ✗ docker run -it spark:v3.0.0 /opt/spark/bin/spark-class org.apache.spark.deploy.history.HistoryServer
++ id -u
+ myuid=0
++ id -g
+ mygid=0
+ set +e
++ getent passwd 0
+ uidentry=root:x:0:0:root:/root:/bin/ash
+ set -e
+ '[' -z root:x:0:0:root:/root:/bin/ash ']'
+ SPARK_CLASSPATH=':/opt/spark/jars/*'
+ env
+ grep SPARK_JAVA_OPT_
+ sort -t_ -k4 -n
+ sed 's/[^=]*=\(.*\)/\1/g'
+ readarray -t SPARK_EXECUTOR_JAVA_OPTS
+ '[' -n '' ']'
+ '[' '' == 2 ']'
+ '[' '' == 3 ']'
+ '[' -z ']'
+ case "$1" in
+ echo 'Non-spark-on-k8s command provided, proceeding in pass-through mode...'
Non-spark-on-k8s command provided, proceeding in pass-through mode...
+ CMD=("$@")
+ exec /sbin/tini -s -- /opt/spark/bin/spark-class org.apache.spark.deploy.history.HistoryServer
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
19/07/09 03:59:22 INFO HistoryServer: Started daemon with process name: 14@df0f7b9fd0cf
19/07/09 03:59:22 INFO SignalUtils: Registered signal handler for TERM
19/07/09 03:59:22 INFO SignalUtils: Registered signal handler for HUP
19/07/09 03:59:22 INFO SignalUtils: Registered signal handler for INT
19/07/09 03:59:23 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
19/07/09 03:59:23 INFO SecurityManager: Changing view acls to: root
19/07/09 03:59:23 INFO SecurityManager: Changing modify acls to: root
19/07/09 03:59:23 INFO SecurityManager: Changing view acls groups to:
19/07/09 03:59:23 INFO SecurityManager: Changing modify acls groups to:
19/07/09 03:59:23 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); groups with view permissions: Set(); users with modify permissions: Set(root); groups with modify permissions: Set()
19/07/09 03:59:23 INFO FsHistoryProvider: History server ui acls disabled; users with admin permissions: ; groups with admin permissions
Exception in thread "main" java.lang.reflect.InvocationTargetException
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.spark.deploy.history.HistoryServer$.main(HistoryServer.scala:278)
at org.apache.spark.deploy.history.HistoryServer.main(HistoryServer.scala)
Caused by: java.io.FileNotFoundException: Log directory specified does not exist: file:/tmp/spark-events Did you configure the correct one through spark.history.fs.logDirectory?
at org.apache.spark.deploy.history.FsHistoryProvider.startPolling(FsHistoryProvider.scala:259)
这个解决起来容易啊,不就是默认读取的 spark event log 文件夹不存在吗,那就创建一个好了,或者在 Spark 的配置文件里改一下默认的 Event 读取路径就好了,这里不赘述了。
3 Summary
所以说用 Docker 来跑一个 Spark History Server 并不是什么问题,而且基本可以说是开箱即用 的,重点是一些配置,和日志存放的硬盘需要和 Spark App 配合好。