绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
干货丨DolphinDB即时编译(JIT)详解
2022-05-23 11:31:13

DolphinDB是高性能分布式时序数据库,内置了丰富的计算功能和强大多范式编程语言。为了能够提高DolphinDB脚本的执行效率,从1.01版本开始,DolphinDB支持即时编译(JIT)。

1 JIT简介

即时编译(英文: Just-in-time compilation, 缩写: JIT),又译及时编译或实时编译,是动态编译的一种形式,可提高程序运行效率。

通常程序有两种运行方式:编译执行和解释执行。编译执行在程序执行前全部翻译为机器码,特点是运行效率较高,以C/C++为代表。解释执行是由解释器对程序逐句解释并执行,灵活性较强,但是执行效率较低,以Python为代表。

即时编译融合了两者的优点,在运行时将代码翻译为机器码,可以达到与静态编译语言相近的执行效率。Python的第三方实现PyPy通过JIT明显改善了解释器的性能。绝大多数的Java实现都依赖JIT以提高代码的运行效率。

2 JIT在DolphinDB中的作用

DolphinDB的编程语言是解释执行,运行程序时首先对程序进行语法分析生成语法树,然后递归执行。在不能使用向量化的情况下,解释成本会比较高。这是由于DolphinDB底层由C++实现,脚本中的一次函数调用会转化为多次C++内的虚拟函数调用。for循环,while循环和if-else等语句中,由于要反复调用函数,十分耗时,在某些场景下不能满足实时性的需求。

DolphinDB中的即时编译功能显著提高了for循环,while循环和if-else等语句的运行速度,特别适合于无法使用向量化运算但又对运行速度有极高要求的场景,例如高频因子计算、实时流数据处理等。

在下面的例子中,我们对比使用和不使用JIT的情况下,do-while循环计算1到1000000之和100次所需要的时间。

def sum_without_jit(v) {
  s = 0l
  i = 1
  n = size(v)
  do {
    s += v[i]
    i += 1
  } while(i <= n)
  return s
}

@jit
def sum_with_jit(v) {
  s = 0l
  i = 1
  n = size(v)
  do {
    s += v[i]
    i += 1
  } while(i <= n)
  return s
}

vec = 1..1000000

timer(100) sum_without_jit(vec)     // 120552.740 ms
timer(100) sum_with_jit(vec)        //    290.065 ms
timer(100) sum(vec)                 //     48.922 ms
复制代码

不使用JIT的耗时是使用JIT的415倍,使用内置sum函数耗时1/7左右,这里内置函数比JIT快是因为JIT生成的代码中有很多检查NULL值的指令,内置的sum函数如果发现输入的array没有NULL值则会省略这一步操作。

vec[100] = NULL
timer(100) sum(vec)        // 118.063 ms
复制代码

如果加上NULL值,内置sum的速度是JIT的2.5倍左右,这是由于内置sum还进行了一些手动的展开优化。如果函数内涉及到更多的复杂计算,那么JIT的速度则会超过向量化运算,这个我们在下面会提到。

若任务可以使用向量化计算,视情况可以不使用JIT,但是在诸如如高频因子生成等实际应用中,如何把循环计算转化为向量化运算需要一定的技巧。

知乎上的一篇专栏中,我们展示了如何使用在DolphinDB中使用向量化运算,其中计算买卖信号的式子如下:

direction = (iif(signal>t1, 1h, iif(signal<t10, 0h, 00h)) - iif(signal<t2, 1h, iif(signal>t20, 0h, 00h))).ffill().nullFill(0h)
复制代码

对于初学DolphinDB的人来说,需要了解iif函数才可写出以上语句。使用for循环改写以上语句则较为容易:

@jit
def calculate_with_jit(signal, n, t1, t10, t20, t2) {
  cur = 0
  idx = 0
  output = array(INT, n, n)
  for (s in signal) {
    if(s > t1) {           // (t1, inf)
      cur = 1
    } else if(s >= t10) {  // [t10, t1]
      if(cur == -1) cur = 0
    } else if(s > t20) {   // [t20, t10)
      cur = 0
    } else if(s >= t2) {   // [t2, t20]
      if(cur == 1) cur = 0
    } else {               // (-inf, t2)
      cur = -1
    }
    output[idx] = cur
    idx += 1
  }
  return output
}
复制代码

把@jit去掉,得到不使用JIT的自定义函数calculate_without_jit。对比三种方法的耗时:

n = 10000000
t1= 60
t10 = 50
t20 = 30
t2 = 20
signal = rand(100.0, n)

timer(100) (iif(signal >t1, 1h, iif(signal < t10, 0h, 00h)) - iif(signal <t2, 1h, iif(signal > t20, 0h, 00h))).ffill().nullFill(0h) // 41092.019 ms
timer(100) calculate_with_jit(calculate, signal, size(signal), t1, t10, t20, t2)       //    17075.127 ms
timer(100) calculate_without_jit(signal, size(signal), t1, t10, t20, t2)               //  1404406.413 ms
复制代码

本例中,使用JIT的速度向量化运算的2.4倍,是不用JIT的82倍。这里JIT的速度比向量化运算还要快,是因为向量化运算中调用了很多次DolphinDB的内置函数,产生了很多中间结果,

涉及到多次内存分配以及虚拟函数调用,而JIT生成的代码则没有这些额外的开销。

另外一种情况是,某些计算无法使用向量化,比如计算期权隐含波动率(implied volatility)时,需要使用牛顿法,无法使用向量化运算。这种情况下如果需要满足一定的实时性,可以选择使用DolphinDB的插件,亦可使用JIT。两者的区别在于,在任何场景下都可以使用插件,但是需要使用C++语言编写,比较复杂;JIT的编写相对而言较为容易,但是适用的场景较为有限。JIT的运行速度与使用C++插件的速度非常接近。

3 如何在DolphinDB中使用JIT

3.1 使用方法

DolphinDB目前仅支持对用户自定义函数进行JIT。只需在用户自定义函数之前的一行添加 @jit 的标识即可:

@jit
def myFunc(/* arguments */) {
  /* implementation */
}
复制代码

用户在调用此函数时,DolphinDB会将函数的代码实时编译为机器码后执行。

3.2 支持的语句

目前DolphinDB支持在JIT中使用以下几种语句:

  • 赋值语句,例如:

    @jit def func() { y = 1 }

请注意,multiple assign目前是不支持的,例如:

@jit
def func() {
  a, b = 1, 2
}
func()
复制代码

运行以上语句会抛出异常。

  • return语句,例如:

    @jit def func() { return 1 }

  • if-else语句,比如:

    @jit def myAbs(x) { if(x > 0) return x else return -x }

  • do-while语句,例如:

    @jit def mySqrt(x) { diff = 0.0000001 guess = 1.0 guess = (x / guess + guess) / 2.0 do { guess = (x / guess + guess) / 2.0 } while(abs(guess * guess - x) >= diff) return guess }

  • for语句,例如:

    @jit def mySum(vec) { s = 0 for(i in vec) { s += i } return s }

DolphinDB支持在JIT中以上语句的任意嵌套。

3.3 支持的运算符和函数

目前DolphinDB支持在JIT中使用以下的运算符:add(+), sub(-), multiply(*), divide(/), and(&&), or(||), bitand(&), bitor(|), bitxor(^), eq(==), neq(!=), ge(>=), gt(>), le(<=), lt(<), neg(-), mod(%), seq(..), at([]),以上运算在所有数据类型下的实现都与非JIT的实现一致。

目前DolphinDB支持在JIT中使用以下的数学函数: exp, log, sin, asin, cos, acos, tan, atan, abs, ceil, floor, sqrt。以上数学函数在JIT中出现时,

如果接受的参数为scalar,那么在后生成的机器码中会调用glibc中对应的函数或者经过优化的C实现的函数;如果接收的参数为array,那么后会调用DolphinDB

提供的数学函数。这样的好处是通过直接调用C实现的代码提升函数运行效率,减少不必要的虚拟函数调用和内存分配。

目前DolphinDB支持在JIT中使用以下的内置函数:take, array, size, isValid, rand,cdfNormal

需要注意,array函数的个参数必须直接指定具体的数据类型,不能通过变量传递指定。这是由于JIT编译时必须知道所有变量的类型,而array函数返回结果的类型由个参数指定,因此编译时必须该值必须已知。

3.4 空值的处理

JIT中所有的函数和运算符处理空值的方法都与原生函数和运算符一致,即每个数据类型都用该类型的小值来表示该类型的空值,用户不需要专门处理空值。

3.5 JIT函数之间的调用

DolphinDB的JIT函数可以调用另一个JIT函数。例如:

@jit
def myfunc1(x) {
  return sqrt(x) + exp(x)
}

@jit
def myfunc2(x) {
  return myfunc1(x)
}

myfunc2(1.5)
复制代码

在上面的例子中,内部会先编译myfunc1, 生成一个签名为 double myfunc1(double) 的native函数,myfunc2生成的机器码中直接调用这个函数,而不是在运行时判断myfunc1是否为JIT函数后再执行,从而达到高的执行效率。

请注意,JIT函数内不可以调用非JIT的用户自定义函数,因为这样无法进行类型推导。关于类型推导下面会提到。

3.6 JIT的编译成本以及缓存机制

DolphinDB的JIT底层依赖LLVM实现,每个用户自定义函数在编译时都会生成自己的module,相互独立。编译主要包含以下几个步骤:

  1. LLVM相关变量和环境的初始化
  2. 根据DolphinDB脚本的语法树生成LLVM的IR
  3. 调用LLVM优化第二步生成的IR,然后编译为机器码

以上步骤中步耗时一般在5ms以内,后面两步的耗时与实际脚本的复杂度成正比,总体而言编译耗时基本上在50ms以内。

对于一个JIT函数以及一个参数类型组合,DolphinDB只会编译一次。系统会对JIT函数编译的结果进行缓存。系统根据用户调用一个JIT函数时提供的参数的数据类型得到一个对应的字符串,然后在一个哈希表中寻找这个字符串对应的编译结果,如果存在则直接调用;如果不存在则开始编译,并将编译结果保存到此哈希表中,然后执行。

对需要反复执行的任务,或者运行时间远超编译耗时的任务,JIT会显著提高运行速度。

3.7 局限

目前DolphinDB中JIT适用的场景还比较有限:

  1. 只支持用户自定义函数的JIT。
  2. 只接受scalar和array类型的参数,另外的类型如table, dict,pair, string, symbol等暂不支持。
  3. 不接受subarray作为参数。

4 类型推导

在使用LLVM生成IR之前,必须知道脚本中所有变量的类型,这个步骤就是类型推导。DolphinDB的JIT使用的类型推导方式是局部推导,比如:

@jit
def foo() {
  x = 1
  y = 1.1
  z = x + y
  return z
}
复制代码

通过 x = 1 确定x的类型是int;通过 y = 1.1 确定y的类型是 double;通过 z = x + y 以及上面推得的x和y的类型,确定z的类型也是double;通过 return z 确定foo函数的返回类型是double。

如果函数有参数的话,比如:

@jit
def foo(x) {
  return x + 1
}
复制代码

foo函数的返回类型就依赖于输入值x的类型。

上面我们提到了目前JIT支持的数据类型,如果函数内部出现了不支持的类型,或者输入的变量类型不支持,那么就会导致整个函数的变量类型推导失败,在运行时会抛出异常。例如:

@jit
def foo(x) {
  return x + 1
}

foo(123)             // 正常执行
foo("abc")           // 抛出异常,因为目前不支持STRING
foo(1:2)             // 抛出异常,因为目前不支持pair
foo((1 2, 3 4, 5 6)) // 抛出异常,因为目前不支持tuple

@jit
def foo(x) {
  y = cumprod(x)
  z = y + 1
  return z
}

foo(1..10)             // 抛出异常,因为目前还不支持cumprod函数,不知道该函数返回的类型,导致类型推导失败
复制代码

因此,为了能够正常使用JIT函数,用户应该避免在函数内或者参数中使用诸如tuple或string等还未支持的类型,不要使用尚不支持的函数。

5 实例

5.1 计算隐含波动率 (implied volatility)

上面提到过某些计算无法进行向量化运算,计算隐含波动率 (implied volatility)就是一个例子:

@jit
def GBlackScholes(future_price, strike, input_ttm, risk_rate, b_rate, input_vol, is_call) {
  ttm = input_ttm + 0.000000000000001;
  vol = input_vol + 0.000000000000001;

  d1 = (log(future_price/strike) + (b_rate + vol*vol/2) * ttm) / (vol * sqrt(ttm));
  d2 = d1 - vol * sqrt(ttm);

  if (is_call) {
    return future_price * exp((b_rate - risk_rate) * ttm) * cdfNormal(0, 1, d1) - strike * exp(-risk_rate*ttm) * cdfNormal(0, 1, d2);
  } else {
    return strike * exp(-risk_rate*ttm) * cdfNormal(0, 1, -d2) - future_price * exp((b_rate - risk_rate) * ttm) * cdfNormal(0, 1, -d1);
  }
}

@jit
def ImpliedVolatility(future_price, strike, ttm, risk_rate, b_rate, option_price, is_call) {
  high=5.0;
  low = 0.0;

  do {
    if (GBlackScholes(future_price, strike, ttm, risk_rate, b_rate, (high+low)/2, is_call) > option_price) {
      high = (high+low)/2;
    } else {
      low = (high + low) /2;
    }
  } while ((high-low) > 0.00001);

  return (high + low) /2;
}

@jit
def test_jit(future_price, strike, ttm, risk_rate, b_rate, option_price, is_call) {
	n = size(future_price)
	ret = array(DOUBLE, n, n)
	i = 0
	do {
		ret[i] = ImpliedVolatility(future_price[i], strike[i], ttm[i], risk_rate[i], b_rate[i], option_price[i], is_call[i])
		i += 1
	} while(i < n)
	return ret
}

n = 100000
future_price=take(rand(10.0,1)[0], n)
strike_price=take(rand(10.0,1)[0], n)
strike=take(rand(10.0,1)[0], n)
input_ttm=take(rand(10.0,1)[0], n)
risk_rate=take(rand(10.0,1)[0], n)
b_rate=take(rand(10.0,1)[0], n)
vol=take(rand(10.0,1)[0], n)
input_vol=take(rand(10.0,1)[0], n)
multi=take(rand(10.0,1)[0], n)
is_call=take(rand(10.0,1)[0], n)
ttm=take(rand(10.0,1)[0], n)
option_price=take(rand(10.0,1)[0], n)

timer(10) test_jit(future_price, strike, ttm, risk_rate, b_rate, option_price, is_call)          //  2621.73 ms
timer(10) test_non_jit(future_price, strike, ttm, risk_rate, b_rate, option_price, is_call)      //   302714.74 ms
复制代码

上面的例子中,ImpliedVolatility会调用GBlackScholes函数。函数test_non_jit可通过把test_jit定义之前的@jit去掉以获取。JIT版本test_jit运行速度是非JIT版本test_non_jit的115倍。

5.2 计算 Greeks

量化金融中经常使用Greeks进行风险评估,下面以Charm为例展示JIT的使用:

@jit
def myMax(a,b){
	if(a>b){
		return a
	}else{
		return b
	}
}

@jit
def NormDist(x) {
  return cdfNormal(0, 1, x);
}

@jit
def ND(x) {
  return (1.0/sqrt(2*pi)) * exp(-(x*x)/2.0)
}

@jit
def CalculateCharm(future_price, strike_price, input_ttm, risk_rate, b_rate, vol, multi, is_call) {
  day_year = 245.0;

  d1 = (log(future_price/strike_price) + (b_rate + (vol*vol)/2.0) * input_ttm) / (myMax(vol,0.00001) * sqrt(input_ttm));
  d2 = d1 - vol * sqrt(input_ttm);

  if (is_call) {
    return -exp((b_rate - risk_rate) * input_ttm) * (ND(d1) * (b_rate/vol/sqrt(input_ttm) - d2/2.0/input_ttm) + (b_rate-risk_rate) * NormDist(d1)) * future_price * multi / day_year;
  } else {
    return -exp((b_rate - risk_rate) * input_ttm) * (ND(d1) * (b_rate/vol/sqrt(input_ttm) - d2/2.0/input_ttm) - (b_rate-risk_rate) * NormDist(-d1)) * future_price * multi / day_year;
  }
}

@jit
def test_jit(future_price, strike_price, input_ttm, risk_rate, b_rate, vol, multi, is_call) {
	n = size(future_price)
	ret = array(DOUBLE, n, n)
	i = 0
	do {
		ret[i] = CalculateCharm(future_price[i], strike_price[i], input_ttm[i], risk_rate[i], b_rate[i], vol[i], multi[i], is_call[i])
		i += 1
	} while(i < n)
	return ret
}


def ND_validate(x) {
  return (1.0/sqrt(2*pi)) * exp(-(x*x)/2.0)
}

def NormDist_validate(x) {
  return cdfNormal(0, 1, x);
}

def CalculateCharm_vectorized(future_price, strike_price, input_ttm, risk_rate, b_rate, vol, multi, is_call) {
	day_year = 245.0;

	d1 = (log(future_price/strike_price) + (b_rate + pow(vol, 2)/2.0) * input_ttm) / (max(vol, 0.00001) * sqrt(input_ttm));
	d2 = d1 - vol * sqrt(input_ttm);
	return iif(is_call,-exp((b_rate - risk_rate) * input_ttm) * (ND_validate(d1) * (b_rate/vol/sqrt(input_ttm) - d2/2.0/input_ttm) + (b_rate-risk_rate) * NormDist_validate(d1)) * future_price * multi / day_year,-exp((b_rate - risk_rate) * input_ttm) * (ND_validate(d1) * (b_rate/vol/sqrt(input_ttm) - d2/2.0/input_ttm) - (b_rate-risk_rate) * NormDist_validate(-d1)) * future_price * multi / day_year)
}

n = 1000000
future_price=rand(10.0,n)
strike_price=rand(10.0,n)
strike=rand(10.0,n)
input_ttm=rand(10.0,n)
risk_rate=rand(10.0,n)
b_rate=rand(10.0,n)
vol=rand(10.0,n)
input_vol=rand(10.0,n)
multi=rand(10.0,n)
is_call=rand(true false,n)
ttm=rand(10.0,n)
option_price=rand(10.0,n)

timer(10) test_jit(future_price, strike_price, input_ttm, risk_rate, b_rate, vol, multi, is_call)                     //   1834.342 ms
timer(10) test_none_jit(future_price, strike_price, input_ttm, risk_rate, b_rate, vol, multi, is_call)                // 224099.805 ms
timer(10) CalculateCharm_vectorized(future_price, strike_price, input_ttm, risk_rate, b_rate, vol, multi, is_call)    //   3117.761 ms
复制代码

上面是一个更加复杂的例子,涉及到更多的函数调用和更复杂的计算,JIT版本比非JIT版本快121倍左右,比向量化版本快0.7倍左右。

5.3 计算止损点 (stoploss)

在这篇知乎专栏中,我们展示了如何使用DolphinDB进行技术信号回测,下面我们用JIT来实现其中的stoploss函数:

@jit
def stoploss_JIT(ret, threshold) {
	n = ret.size()
	i = 0
	curRet = 1.0
	curMaxRet = 1.0
	indicator = take(true, n)

	do {
		indicator[i] = false
		curRet *= (1 + ret[i])
		if(curRet > curMaxRet) { curMaxRet = curRet }
		drawDown = 1 - curRet / curMaxRet;
		if(drawDown >= threshold) {
			i = n // break is not supported for now
		}
		i += 1
	} while(i < n)

	return indicator
}

def stoploss_no_JIT(ret, threshold) {
	n = ret.size()
	i = 0
	curRet = 1.0
	curMaxRet = 1.0
	indicator = take(true, n)

	do {
		indicator[i] = false
		curRet *= (1 + ret[i])
		if(curRet > curMaxRet) { curMaxRet = curRet }
		drawDown = 1 - curRet / curMaxRet;
		if(drawDown >= threshold) {
			i = n // break is not supported for now
		}
		i += 1
	} while(i < n)

	return indicator
}

def stoploss_vectorization(ret, threshold){
	cumret = cumprod(1+ret)
 	drawDown = 1 - cumret / cumret.cummax()
	firstCutIndex = at(drawDown >= threshold).first() + 1
	indicator = take(false, ret.size())
	if(isValid(firstCutIndex) and firstCutIndex < ret.size())
		indicator[firstCutIndex:] = true
	return indicator
}
ret = take(0.0008 -0.0008, 1000000)
threshold = 0.10
timer(10) stoploss_JIT(ret, threshold)              //      58.674 ms
timer(10) stoploss_no_JIT(ret, threshold)           //   14622.142 ms
timer(10) stoploss_vectorization(ret, threshold)    //     151.884 ms
复制代码

stoploss这个函数实际上只需要找到drawdown大于threshold的天,不需要把cumprod和cummax全部计算出来,因此用JIT实现的版本比向量化版本快了1.5倍左右,比非JIT版本快248倍左右。

如果数据中后一天才要stoploss,那么JIT版本的速度会和向量化一样,但是远远比非JIT版本快。

6. 未来

在后续的版本中,我们计划逐步支持以下功能:

  1. 在for, do-while语句中支持break和continue。
  2. 支持dictionary等数据结构,支持string等数据类型。
  3. 支持更多的数学和统计类函数。
  4. 增强类型推导功能,能够识别更多DolphinDB内置函数返回值的数据类型。
  5. 支持在自定义函数中为输入参数,返回值和局部变量声明数据类型。

7 总结

DolphinDB推出了即时编译执行自定义函数的功能,显著提高了for循环,while循环和if-else等语句的运行速度,特别适合于无法使用向量化运算但又对运行速度有极高要求的场景,例如高频因子计算、实时流数据处理等。


作者:DolphinDB
链接:https://juejin.cn/post/6935232522313793573

分享好友

分享这个小栈给你的朋友们,一起进步吧。

DolphinDB
创建时间:2022-03-28 14:36:10
DolphinDB
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

技术专家

查看更多
  • itt0918
    专家
戳我,来吐槽~