绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
Hive分区partition详解
2020-07-01 16:53:18

Hive分区partition详解

Hive分区更方便于数据管理,常见的有时间分区和业务分区。

下面我们来通过实例来理解Hive分区的原理;

一、单分区操作

1.创建分区表

create table t1(

id int

,name string

,hobby array<string>

,add map<String,string>

)

partitioned by (pt_d string)

row format delimited

fields terminated by ','

collection items terminated by '-'

map keys terminated by ':'

;

注:这里分区字段不能和表中的字段重复。

如果分区字段和表中字段相同的话,会报错,如下:

create table t1(

id int

,name string

,hobby array<string>

,add map<String,string>

)

partitioned by (id int)

row format delimited

fields terminated by ','

collection items terminated by '-'

map keys terminated by ':'

;

报错信息:FAILED: SemanticException [Error 10035]: Column repeated in partitioning columns

2.装载数据

需要装载的文件内容如下:

1,xiaoming,book-TV-code,beijing:chaoyang-shagnhai:pudong

2,lilei,book-code,nanjing:jiangning-taiwan:taibei

3,lihua,music-book,heilongjiang:haerbin

执行load data

load data local inpath '/home/hadoop/Desktop/data' overwrite into table t1 partition ( pt_d = '201701');

3.查看数据及分区

查看数据

select * from t1;

结果

1 xiaoming ["book","TV","code"] {"beijing":"chaoyang","shagnhai":"pudong"} 201701

2 lilei ["book","code"] {"nanjing":"jiangning","taiwan":"taibei"} 201701

3 lihua ["music","book"] {"heilongjiang":"haerbin"} 201701

查看分区

show partitions t1;

插入另一个分区

在创建一份数据并装载,分区=‘000000’

load data local inpath '/home/hadoop/Desktop/data' overwrite into table t1 partition ( pt_d = '000000');

查看数据:select * from t1;

1 xiaoming ["book","TV","code"] {"beijing":"chaoyang","shagnhai":"pudong"} 000000

2 lilei ["book","code"] {"nanjing":"jiangning","taiwan":"taibei"} 000000

3 lihua ["music","book"] {"heilongjiang":"haerbin"} 000000

1 xiaoming ["book","TV","code"] {"beijing":"chaoyang","shagnhai":"pudong"} 201701

2 lilei ["book","code"] {"nanjing":"jiangning","taiwan":"taibei"} 201701

3 lihua ["music","book"] {"heilongjiang":"haerbin"} 201701

观察HDFS上的文件

去hdfs上看文件

http://namenode:50070/explorer.html#/user/hive/warehouse/test.db/t1

可以看到,文件是根据分区分别存储

查询相应分区的数据

select * from t1 where pt_d = ‘000000’

添加分区,增加一个分区文件

alter table t1 add partition (pt_d = ‘333333’);

删除分区(删除相应分区文件)

注意,对于外表进行drop partition并不会删除hdfs上的文件,并且通过msck repair table table_name同步回hdfs上的分区。

alter table test1 drop partition (pt_d = ‘20170101’);

二、多个分区操作

创建分区表

create table t10(

id int

,name string

,hobby array<string>

,add map<String,string>

)

partitioned by (pt_d string,sex string)

row format delimited

fields terminated by ','

collection items terminated by '-'

map keys terminated by ':'

;

装载数据(分区字段必须都要加)

load data local inpath ‘/home/hadoop/Desktop/data’ overwrite into table t10 partition ( pt_d = ‘0’);

如果只是添加一个,会报错:FAILED: SemanticException [Error 10006]: Line 1:88 Partition not found ”0”

load data local inpath '/home/hadoop/Desktop/data' overwrite into table t10 partition ( pt_d = '0',sex='male');

load data local inpath '/home/hadoop/Desktop/data' overwrite into table t10 partition ( pt_d = '0',sex='female');

,观察HDFS上的文件,可发现多个分区具有顺序性,可以理解为windows的树状文件夹结构。

表分区的增删修查

增加分区

这里我们创建一个分区外部表

create external table testljb(id int) partitioned by (age int);

添加分区

官网说明:

ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec [LOCATION 'location'][, PARTITION partition_spec [LOCATION 'location'], ...];

partition_spec:

: (partition_column = partition_col_value, partition_column = partition_col_value, ...)

实例说明

一次增加一个分区

alter table testljb add partition (age=2);

一次增加多个分区

alter table testljb add partition(age=3) partition(age=4);

注意:一定不能写成如下方式:

alter table testljb add partition(age=5,age=6);

如果我们show partitions table_name 会发现仅仅添加了age=6的分区。

这里猜测原因:因为这种写法实际上:具有多个分区字段表的分区添加,而我们写两次同一个字段,而系统中并没有两个age分区字段,那么就会随机添加其中一个分区。

举个例子,有个表具有两个分区字段:age分区和sex分区。那么我们添加一个age分区为1,sex分区为male的数据,可以这样添加:

alter table testljb add partition(age=1,sex='male');

删除分区

删除分区age=1

alter table testljb drop partition(age=1);

注:加入表testljb有两个分区字段(上文已经提到多个分区先后顺序类似于windows的文件夹的树状结构),partitioned by(age int ,sex string),那么我们删除age分区(第一个分区)时,会把该分区及其下面包含的所有sex分区一起删掉。

修复分区

修复分区就是重新同步hdfs上的分区信息。

msck repair table table_name;

查询分区

这个很简单

show partitions table_name;

---------------------

作者:大数据JavaLiu_Arvin

分享好友

分享这个小栈给你的朋友们,一起进步吧。

Hive专区
创建时间:2020-07-01 14:09:32
Hive是一个基于Hadoop的数据仓库平台。通过hive,我们可以方便地进行ETL的工作。hive定义了一个类似于SQL的查询语言:HQL,能 够将用户编写的QL转化为相应的Mapreduce程序基于Hadoop执行。 Hive是Facebook 2008年8月刚开源的一个数据仓库框架,其系统目标与 Pig 有相似之处,但它有一些Pig目前还不支持的机制,比如:更丰富的类型系统、更类似SQL的查询语言、Table/Partition元数据的持久化等。
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

技术专家

查看更多
  • markriver
    专家
戳我,来吐槽~