前言
技术如同手中的水有了生命似的,汇聚在了一起。为了方便大家学习与工作查询资料。现生成大数据命令文档供大家参考。
本总结只列举常用的命令,比较多的命令操作。比如linux,kafka命令就比较多,hdfs操作也多。但是对于HBase. . . . .这类框架命令比较少,就不再本篇展示。望周知。其中内容包含以下,具体命令会一一介绍。
Linux(vi/vim)
一般模式
语法 | 功能描述 |
---|---|
yy | 复制光标当前一行 |
y数字y | 复制一段(从第几行到第几行) |
p | 箭头移动到目的行粘贴 |
u | 撤销上一步 |
dd | 删除光标当前行 |
d数字d | 删除光标(含)后多少行 |
x | 删除一个字母,相当于del |
X | 删除一个字母,相当于Backspace |
yw | 复制一个词 |
dw | 删除一个词 |
shift+^ | 移动到行头 |
shift+$ | 移动到行尾 |
1+shift+g | 移动到页头,数字 |
shift+g | 移动到页尾 |
数字N+shift+g | 移动到目标行 |
编辑模式
按键 | 功能 |
---|---|
i | 当前光标前 |
a | 当前光标后 |
o | 当前光标行的下一行 |
I | 光标所在行前 |
A | 光标所在行后 |
O | 当前光标行的上一行 |
指令模式
命令 | 功能 |
---|---|
:w | 保存 |
:q | 退出 |
:! | 强制执行 |
/要查找的词 | n 查找下一个,N 往上查找 |
? 要查找的词 | n是查找上一个,shift+n是往下查找 |
:set nu | 显示行号 |
:set nonu | 关闭行号 |
压缩和解压
gzip/gunzip 压缩
(1)只能压缩文件不能压缩目录
(2)不保留原来的文件
gzip压缩:gzip hello.txt
gunzip解压缩文件:gunzip hello.txt.gz
zip/unzip 压缩
可以压缩目录且保留源文件
zip压缩(压缩 1.txt 和2.txt,压缩后的名称为mypackage.zip):zip hello.zip hello.txt world.txt
unzip解压:unzip hello.zip
unzip解压到指定目录:unzip hello.zip -d /opt
tar 打包
tar压缩多个文件:tar -zcvf hello.txt world.txt
tar压缩目录:tar -zcvf hello.tar.gz opt/
tar解压到当前目录:tar -zxvf hello.tar.gz
tar解压到指定目录:tar -zxvf hello.tar.gz -C /opt
RPM
RPM查询命令:rpm -qa |grep firefox
RPM卸载命令:
rpm -e xxxxxx
rpm -e --nodeps xxxxxx(不检查依赖)
RPM安装命令:
rpm -ivh xxxxxx.rpm
rpm -ivh --nodeps fxxxxxx.rpm(--nodeps,不检测依赖进度)
选项 | 功能 |
---|---|
-i | -i=install,安装 |
-v | -v=verbose,显示详细信息 |
-h | -h=hash,进度条 |
--nodeps | --nodeps,不检测依赖进度 |
Shell
输入/输出重定向
命令 | 功能说明 |
---|---|
command > file | 将输出重定向到 file |
command < file | 将输入重定向到 file |
command >> file | 将输出以追加的方式重定向到 file |
n > file | 将文件描述符为 n 的文件重定向到 file |
n >> file | 将文件描述符为 n 的文件以追加的方式重定向到 file |
n >& m | 将输出文件 m 和 n 合并 |
n <& m | 将输入文件 m 和 n 合并 |
<< tag | 将开始标记 tag 和结束标记 tag 之间的内容作为输入 |
脚本编辑
快捷方式 | 功能说明 |
---|---|
shift | 参数左移 |
$@ | 所有的参数 |
$# | 参数的个数 |
Hadoop
启动类命令
功能说明 | 命令脚本 |
---|---|
启动hdfs集群 | sbin/start-dfs.sh |
启动yarn | sbin/start-yarn.sh |
hadoop fs/hdfs dfs 命令
功能说明 | 命令 |
---|---|
创建目录 | hdfs dfs -mkdir -p /data/flink |
显示目录 | hdfs dfs -ls / |
从HDFS拷贝到本地 | hdfs dfs -copyToLocal /data/data.txt ./ |
文件上传到集群(从本地) | hhdfs dfs -copyFromLocal data.txt / |
文件下载 | hdfs dfs -get /data/flink |
删除集群的文件 | hdfs dfs -rm /data/flink |
删除文件夹 | hdfs dfs -rm -r -skipTrash /data |
从本地剪切粘贴到HDFS | hdfs dfs -moveFromLocal data.txt /data/ |
追加一个文件到已经存在的文件末尾hdfs dfs -appendToFile data1.txt /data/data.txt | |
显示文件内容 | hdfs dfs -cat data.txt |
修改文件所属权限 | hdfs dfs -chmod 777 xxx.sh |
修改文件所属用户组 | hdfs dfs -chown root:root data.txt |
从HDFS的一个路径拷贝到HDFS的另一个路径 | hdfs dfs -cp data.txt /data1.txt |
在HDFS目录中移动文件 | hdfs dfs -mv data.txt /opt/ |
合并下载多个文件 | hdfs dfs -getmerge /data/* ./data_merge.txt |
hadoop fs -put | 等同于copyFromLocal |
显示一个文件的末尾 | hdfs dfs -tail data.txt |
删除文件或文件夹 | hdfs dfs -rm /data/data.txt |
删除空目录 | hdfs dfs -rmdir /data |
统计文件夹的大小信息 | hdfs dfs -s -h /data |
统计文件夹下的文件大小信息 | hdfs dfs -h /data |
设置HDFS中文件的副本数量 | hdfs dfs -setrep 3 /data/data.txt |
yarn命令
功能说明 | 命令 |
---|---|
查看正在运行的yarn任务列表 | yarn application -list appID |
kill掉指定id的yarn任务 | yarn application -kill appID |
查看任务日志信息 | yarn logs -applicationId appID |
Zookeeper
启动命令
功能说明 | 命令脚本 |
---|---|
启动zookeeper服务 | zkServer.sh start |
查看zookeeper状态 | zkServer.sh status |
停止zookeeper服务 | zkServer.sh stop |
启动zookeeper客户端 | zkCli.sh -server 127.0.0.1:2181 |
退出zookeeper客户端 | quit |
基本操作
功能说明 | 命令脚本 |
---|---|
当前znode中所包含的内容 | ls / |
创建普通节点(前面是节点的路径,后面是值) | create /bigdata/flink "flink" |
获取节点的值 | get /bigdata |
修改节点的值 | set /bigdata/flink "flinksql" |
删除节点 | delete /bigdata/flink |
递归删除节点 | rmr /bigdata |
四字母命令
命令 | 功能说明 | 例子 |
---|---|---|
conf | zk服务配置的详细信息 | echo conf | nc 127.0.0.1 2181 |
stat | 客户端与zk连接的简要信息 | 参考上面 |
srvr | zk服务的详细信息 | 参考上面 |
cons | 客户端与zk连接的详细信息 | 参考上面 |
mntr | zk服务目前的性能状况 | 参考上面 |
crst | 重置当前的所有连接、会话 | 参考上面 |
dump | 列出未经处理的会话和连接信息 | 参考上面 |
envi | 列出zk的版本信息、主机名称、Java版本、服务器名称等等 | 参考上面 |
ruok | 测试服务器是否正在运行,如果在运行返回imok,否则返回空 | 参考上面 |
srst | 重置Zookeeper的所有统计信息 | 参考上面 |
wchs | 列出watch的总数,连接数 | 参考上面 |
wchp | 列出所有watch的路径及sessionID | 参考上面 |
mntr | 列出集群的关键性能数据,包括zk的版本、node数量、临时节点数等等 | 参考上面 |
Kafka
「注:」 这里机器我只写一个。命令你们也可使用 ./bin/xx.sh (如:./bin/kafka-topics.sh)
查看当前服务器中的所有topic
kafka-topics --zookeeper xxxxxx:2181 --list --exclude-internal
说明:
exclude-internal:排除kafka内部topic
比如: --exclude-internal --topic "test_.*"
创建topic
kafka-topics --zookeeper xxxxxx:2181 --create
--replication-factor
--partitions 1
--topic topic_name
说明:
--topic 定义topic名
--replication-factor 定义副本数
--partitions 定义分区数
删除topic
「注意:」 需要server.properties中设置delete.topic.enable=true否则只是标记删除
kafka-topics --zookeeper xxxxxx:2181 --delete --topic topic_name
生产者
kafka-console-producer --broker-list xxxxxx:9092 --topic topic_name
可加:--property parse.key=true(有key消息)
消费者
kafka-console-consumer --bootstrap-server xxxxxx:9092 --topic topic_name
注:可选
--from-beginning:会把主题中以往所有的数据都读取出来
--whitelist '.*' :消费所有的topic
--property print.key=true:显示key进行消费
--partition :指定分区消费
--offset:指定起始偏移量消费
查看某个Topic的详情
kafka-topics --zookeeper xxxxxx:2181 --describe --topic topic_name
修改分区数
kafka-topics --zookeeper xxxxxx:2181 --alter --topic topic_name --partitions 6
查看某个消费者组信息
kafka-consumer-groups --bootstrap-server xxxxxx:9092 --describe --group group_name
删除消费者组
kafka-consumer-groups --bootstrap-server xxxxxx:9092 ---delete --group group_name
重置offset
kafka-consumer-groups --bootstrap-server xxxxxx:9092 --group group_name
--reset-offsets --all-topics --to-latest --execute
leader重新选举
指定Topic指定分区用重新PREFERRED:优先副本策略 进行Leader重选举
kafka-leader-election --bootstrap-server xxxxxx:9092
--topic topic_name --election-type PREFERRED --partition 0
所有Topic所有分区用重新PREFERRED:优先副本策略 进行Leader重选举
kafka-leader-election --bootstrap-server xxxxxx:9092
--election-type preferred --all-topic-partitions
查询kafka版本信息
kafka-configs --bootstrap-server xxxxxx:9092
--describe --version
增删改配置
功能说明 | 参数 |
---|---|
选择类型 | --entity-type (topics/clients/users/brokers/broker- loggers) |
类型名称 | --entity-name |
删除配置 | --delete-config k1=v1,k2=v2 |
添加/修改配置 | --add-config k1,k2 |
topic添加/修改动态配置
kafka-configs --bootstrap-server xxxxxx:9092
--alter --entity-type topics --entity-name topic_name
--add-config file.delete.delay.ms=222222,retention.ms=999999
topic删除动态配置
kafka-configs --bootstrap-server xxxxxx:9092
--alter --entity-type topics --entity-name topic_name
--delete-config file.delete.delay.ms,retention.ms
持续批量拉取消息
单次大消费10条消息(不加参数意为持续消费)
kafka-verifiable-consumer --bootstrap-server xxxxxx:9092
--group group_name
--topic topic_name --max-messages 10
删除指定分区的消息
删除指定topic的某个分区的消息删除至offset为1024
json文件offset-json-file.json
{
"partitions": [
{
"topic": "topic_name",
"partition": ,
"offset": 1024
}
],
"version": 1
}
kafka-delete-records --bootstrap-server xxxxxx:9092
--offset-json-file offset-json-file.json
查看Broker磁盘信息
查询指定topic磁盘信息
kafka-log-dirs --bootstrap-server xxxxxx:9090
--describe --topic-list topic1,topic2
查询指定Broker磁盘信息
kafka-log-dirs --bootstrap-server xxxxxx:9090
--describe --topic-list topic1 --broker-list
Hive
启动类
功能说明 | 命令 |
---|---|
启动hiveserver2服务 | bin/hiveserver2 |
启动beeline | bin/beeline |
连接hiveserver2 | beeline> !connect jdbc:hive2://hadoop102:10000 |
metastroe服务 | bin/hive --service metastore |
hive 启动元数据服务(metastore和hiveserver2)和优雅关闭脚本
启动:hive.sh start
关闭:hive.sh stop
重启:hive.sh restart
状态:hive.sh status
脚本如下
#!/bin/bash
HIVE_LOG_DIR=$HIVE_HOME/logs
mkdir -p $HIVE_LOG_DIR
#检查进程是否运行正常,参数1为进程名,参数2为进程端口
function check_process()
{
pid=$(ps -ef 2>/dev/null | grep -v grep | grep -i $1 | awk '{print $2}')
ppid=$(netstat -nltp 2>/dev/null | grep $2 | awk '{print $7}' | cut -d '/' -f 1)
echo $pid
[[ "$pid" =~ "$ppid" ]] && [ "$ppid" ] && return || return 1
}
function hive_start()
{
metapid=$(check_process HiveMetastore 9083)
cmd="nohup hive --service metastore >$HIVE_LOG_DIR/metastore.log 2>&1 &"
cmd=$cmd" sleep4; hdfs dfsadmin -safemode wait >/dev/null 2>&1"
[ -z "$metapid" ] && eval $cmd || echo "Metastroe服务已启动"
server2pid=$(check_process HiveServer2 10000)
cmd="nohup hive --service hiveserver2 >$HIVE_LOG_DIR/hiveServer2.log 2>&1 &"
[ -z "$server2pid" ] && eval $cmd || echo "HiveServer2服务已启动"
}
function hive_stop()
{
metapid=$(check_process HiveMetastore 9083)
[ "$metapid" ] && kill $metapid || echo "Metastore服务未启动"
server2pid=$(check_process HiveServer2 10000)
[ "$server2pid" ] && kill $server2pid || echo "HiveServer2服务未启动"
}
case $1 in
"start")
hive_start
;;
"stop")
hive_stop
;;
"restart")
hive_stop
sleep 2
hive_start
;;
"status")
check_process HiveMetastore 9083 >/dev/null && echo "Metastore服务运行正常" || echo "Metastore服务运行异常"
check_process HiveServer2 10000 >/dev/null && echo "HiveServer2服务运行正常" || echo "HiveServer2服务运行异常"
;;
*)
echo Invalid Args!
echo 'Usage: '$(basename $)' start|stop|restart|status'
;;
esac
常用交互命令
功能说明 | 命令 |
---|---|
不进入hive的交互窗口执行sql | bin/hive -e "sql语句" |
执行脚本中sql语句 | bin/hive -f hive.sql |
退出hive窗口 | exit 或 quit |
命令窗口中查看hdfs文件系统 | dfs -ls / |
命令窗口中查看hdfs文件系统 | ! ls /data/h |
SQL类(特殊的)
说明 | 语句 |
---|---|
查看hive中的所有数据库 | show databases |
用default数据库 | use default |
查询表结构 | desc table_name |
查看数据库 | show databases |
重命名表名 | alter table table1 rename to table2 |
修改表中字段 | alter table table_name change name user_name String |
修改字段类型 | alter table table_name change salary salary Double |
创建外部表 | create external table .... |
查询外部表信息 | desc formatted outsidetable |
创建视图 | create view view_name as select * from table_name ..... |
添加数据 | load data local inpath 'xxx' overwrite into table table_name partition(day='2021-12-01') |
内置函数
(1) NVL
给值为NULL的数据赋值,它的格式是NVL( value,default_value)。它的功能是如果value为NULL,则NVL函数返回default_value的值,否则返回value的值,如果两个参数都为NULL ,则返回NULL
select nvl(column, ) from xxx;
(2)行转列
函数 | 描述 |
---|---|
CONCAT(string A/col, string B/col…) | 返回输入字符串连接后的结果,支持任意个输入字符串 |
CONCAT_WS(separator, str1, str2,...) | 个参数参数间的分隔符,如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接的字符串之间。 |
COLLECT_SET(col) | 将某字段的值进行去重汇总,产生array类型字段 |
COLLECT_LIST(col) | 函数只接受基本数据类型,它的主要作用是将某字段的值进行不去重汇总,产生array类型字段。 |
(3)列转行(一列转多行)
「Split(str, separator):」 将字符串按照后面的分隔符切割,转换成字符array。
「EXPLODE(col):」将hive一列中复杂的array或者map结构拆分成多行。
「LATERAL VIEW」
用法:
LATERAL VIEW udtf(expression) tableAlias AS columnAlias
解释:lateral view用于和split, explode等UDTF一起使用,它能够将一行数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。
lateral view首先为原始表的每行调用UDTF,UDTF会把一行拆分成一或者多行,lateral view再把结果组合,产生一个支持别名表的虚拟表。
「准备数据源测试」
movie | category |
---|---|
《功勋》 | 记录,剧情 |
《战狼2》 | 战争,动作,灾难 |
「SQL」
SELECT movie,category_name
FROM movie_info
lateral VIEW
explode(split(category,",")) movie_info_tmp AS category_name ;
「测试结果」
《功勋》 记录
《功勋》 剧情
《战狼2》 战争
《战狼2》 动作
《战狼2》 灾难
窗口函数
(1)OVER()
定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化。
(2)CURRENT ROW(当前行)
n PRECEDING:往前n行数据
n FOLLOWING:往后n行数据
(3)UNBOUNDED(无边界)
UNBOUNDED PRECEDING 前无边界,表示从前面的起点
UNBOUNDED FOLLOWING后无边界,表示到后面的终点
「SQL案例:由起点到当前行的聚合」
select
sum(money) over(partition by user_id order by pay_time rows between UNBOUNDED PRECEDING and current row)
from or_order;
「SQL案例:当前行和前面一行做聚合」
select
sum(money) over(partition by user_id order by pay_time rows between 1 PRECEDING and current row)
from or_order;
「SQL案例:当前行和前面一行和后一行做聚合」
select
sum(money) over(partition by user_id order by pay_time rows between 1 PRECEDING AND 1 FOLLOWING )
from or_order;
「SQL案例:当前行及后面所有行」
select
sum(money) over(partition by user_id order by pay_time rows between current row and UNBOUNDED FOLLOWING )
from or_order;
(4)LAG(col,n,default_val)
往前第n行数据,没有的话default_val
(5)LEAD(col,n, default_val)
往后第n行数据,没有的话default_val
「SQL案例:查询用户购买明细以及上次的购买时间和下次购买时间」
select
user_id,,pay_time,money,
lag(pay_time,1,'1970-01-01') over(PARTITION by name order by pay_time) prev_time,
lead(pay_time,1,'1970-01-01') over(PARTITION by name order by pay_time) next_time
from or_order;
(6)FIRST_VALUE(col,true/false)
当前窗口下的个值,第二个参数为true,跳过空值。
(7)LAST_VALUE (col,true/false)
当前窗口下的后一个值,第二个参数为true,跳过空值。
「SQL案例:查询用户每个月次的购买时间 和 每个月的后一次购买时间」
select
FIRST_VALUE(pay_time)
over(
partition by user_id,month(pay_time) order by pay_time
rows between UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING
) first_time,
LAST_VALUE(pay_time)
over(partition by user_id,month(pay_time) order by pay_time rows between UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING
) last_time
from or_order;
(8)NTILE(n)
把有序窗口的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。(用于将分组数据按照顺序切分成n片,返回当前切片值)
「SQL案例:查询前25%时间的订单信息」
select * from (
select User_id,pay_time,money,
ntile(4) over(order by pay_time) sorted
from or_order
) t
where sorted = 1;
4个By
(1)Order By
全局排序,只有一个Reducer。
(2)Sort By
分区内有序。
(3)Distrbute By
类似MR中Partition,进行分区,结合sort by使用。
(4) Cluster By
当Distribute by和Sorts by字段相同时,可以使用Cluster by方式。Cluster by除了具有Distribute by的功能外还兼具Sort by的功能。但是排序只能是升序排序,不能指定排序规则为ASC或者DESC。
在生产环境中Order By用的比较少,容易导致OOM。
在生产环境中Sort By+ Distrbute By用的多。
排序函数
(1)RANK()
排序相同时会重复,总数不会变
1
1
3
3
5
(2)DENSE_RANK()
排序相同时会重复,总数会减少
1
1
2
2
3
(3)ROW_NUMBER()
会根据顺序计算
1
2
3
4
5
日期函数
datediff:返回结束日期减去开始日期的天数
datediff(string enddate, string startdate)
select datediff('2021-11-20','2021-11-22')
date_add:返回开始日期startdate增加days天后的日期
date_add(string startdate, int days)
select date_add('2021-11-20',3)
date_sub:返回开始日期startdate减少days天后的日期
date_sub (string startdate, int days)
select date_sub('2021-11-22',3)
Redis
启动类
key
命令 | 功能说明 |
---|---|
keys * | 查看当前库的所有键 |
exists | 判断某个键是否存在 |
type | 查看键的类型 |
del | 删除某个键 |
expire | 为键值设置过期时间,单位秒 |
ttl | 查看还有多久过期,-1表示永不过期,-2表示已过期 |
dbsize | 查看当前数据库中key的数量 |
flushdb | 清空当前库 |
Flushall | 通杀全部库 |
String
命令 | 功能说明 |
---|---|
get | 查询对应键值 |
set | 添加键值对 |
append | 将给定的 |
strlen | 获取值的长度 |
setnx | 只有在key 不存在时设置key的值 |
incr | 将key中存储的数字值增1只能对数字值操作,如果为空,新增值为1 |
decr | 将key中存储的数字值减1只能对数字之操作,如果为空,新增值为-1 |
incrby /decrby |
将key中存储的数字值增减,自定义步长 |
mset | 同时设置一个或多个key-value对 |
mget | 同时获取一个或多个value |
msetnx | 同时设置一个或多个key-value对,当且仅当所有给定的key都不存在 |
getrange |
获得值的范围,类似java中的substring |
setrange |
用 |
setex |
设置键值的同时,设置过去时间,单位秒 |
getset | 以新换旧,设置了新值的同时获取旧值 |
List
命令 | 功能说明 |
---|---|
lpush/rpush | 从左边/右边插入一个或多个值。 |
lpop/rpop | 从左边/右边吐出一个值。值在键在,值光键亡。 |
rpoplpush | 从 |
lrange | 按照索引下标获得元素(从左到右) |
lindex | 按照索引下标获得元素(从左到右) |
llen | 获得列表长度 |
linsert |
在 |
lrem | 从左边删除n个value(从左到右) |
Set
命令 | 功能说明 |
---|---|
sadd |
将一个或多个 member 元素加入到集合 key 当中,已经存在于集合的 member 元素将被忽略。 |
smembers | 取出该集合的所有值。 |
sismember | 判断集合 |
scard | 返回该集合的元素个数。 |
srem |
删除集合中的某个元素。 |
spop | 随机从该集合中吐出一个值。 |
srandmember | 随机从该集合中取出n个值。不会从集合中删除 |
sinter | 返回两个集合的交集元素。 |
sunion | 返回两个集合的并集元素。 |
sdiff | 返回两个集合的差集元素。 |
Hash
命令 | 功能说明 |
---|---|
hset | 给 |
hget | 从 |
hmset |
批量设置hash的值 |
hexists key | 查看哈希表 key 中,给定域 field 是否存在。 |
hkeys | 列出该hash集合的所有field |
hvals | 列出该hash集合的所有value |
hincrby | 为哈希表 key 中的域 field 的值加上增量 increment |
hsetnx | 将哈希表 key 中的域 field 的值设置为 value ,当且仅当域 field 不存在 |
zset(Sorted set)
命令 | 功能说明 |
---|---|
zadd |
将一个或多个 member 元素及其 score 值加入到有序集 key 当中 |
zrange |
返回有序集 key 中,下标在 |
zrangebyscore key min max [withscores] [limit offset count] | 返回有序集 key 中,所有 score 值介于 min 和 max 之间(包括等于 min 或 max )的成员。有序集成员按 score 值递增(从小到大)次序排列。 |
zrevrangebyscore key max min [withscores] [limit offset count] | 同上,改为从大到小排列。 |
zincrby | 为元素的score加上增量 |
zrem | 删除该集合下,指定值的元素 |
zcount | 统计该集合,分数区间内的元素个数 |
zrank | 返回该值在集合中的排名,从0开始。 |
Flink
启动
./start-cluster.sh
run
./bin/flink run [OPTIONS]
./bin/flink run -m yarn-cluster -c com.wang.flink.WordCount /opt/app/WordCount.jar
OPTIONS | 功能说明 |
---|---|
-d | detached 是否使用分离模式 |
-m | jobmanager 指定提交的jobmanager |
-yat | –yarnapplicationType 设置yarn应用的类型 |
-yD | 使用给定属性的值 |
-yd | –yarndetached 使用yarn分离模式 |
-yh | –yarnhelp yarn session的帮助 |
-yid | –yarnapplicationId 挂到正在运行的yarnsession上 |
-yj | –yarnjar Flink jar文件的路径 |
-yjm | –yarnjobManagerMemory jobmanager的内存(单位M) |
-ynl | –yarnnodeLabel 指定 YARN 应用程序 YARN 节点标签 |
-ynm | –yarnname 自定义yarn应用名称 |
-yq | –yarnquery 显示yarn的可用资源 |
-yqu | –yarnqueue 指定yarn队列 |
-ys | –yarnslots 指定每个taskmanager的slots数 |
-yt | yarnship 在指定目录中传输文件 |
-ytm | –yarntaskManagerMemory 每个taskmanager的内存 |
-yz | –yarnzookeeperNamespace 用来创建ha的zk子路径的命名空间 |
-z | –zookeeperNamespace 用来创建ha的zk子路径的命名空间 |
-p | 并行度 |
-yn | 需要分配的YARN容器个数(=任务管理器的数量) |
info
./bin/flink info [OPTIONS]
OPTIONS | 功能说明 |
---|---|
-c | 程序进入点,主类 |
-p | 并行度 |
list
./bin/flink list [OPTIONS]
OPTIONS | 功能说明 |
---|---|
-a | –all 显示所有应用和对应的job id |
-r | –running 显示正在运行的应用和job id |
-s | –scheduled 显示调度的应用和job id |
-m | –jobmanager 指定连接的jobmanager |
-yid | –yarnapplicationId 挂到指定的yarn id对应的yarn session上 |
-z | –zookeeperNamespace 用来创建ha的zk子路径的命名空间 |
stop
./bin/flink stop [OPTIONS] <Job ID>
OPTIONS | 功能说明 |
---|---|
-d | 在采取保存点和停止管道之前,发送MAX_WATERMARK |
-p | savepointPath 保存点的路径 'xxxxx' |
-m | –jobmanager 指定连接的jobmanager |
-yid | –yarnapplicationId 挂到指定的yarn id对应的yarn session上 |
-z | –zookeeperNamespace 用来创建ha的zk子路径的命名空间 |
cancel(弱化)
./bin/flink cancel [OPTIONS] <Job ID>
OPTIONS | 功能说明 |
---|---|
-s | 使用 "stop "代替 |
-D | 允许指定多个通用配置选项 |
-m | 要连接的JobManager的地址 |
-yid | –yarnapplicationId 挂到指定的yarn id对应的yarn session上 |
-z | –zookeeperNamespace 用来创建ha的zk子路径的命名空间 |
savepoint
./bin/flink savepoint [OPTIONS] <Job ID>
OPTIONS | 功能说明 |
---|---|
-d | 要处理的保存点的路径 |
-j | Flink程序的JAR文件 |
-m | 要连接的JobManager的地址 |
-yid | –yarnapplicationId 挂到指定的yarn id对应的yarn session上 |
-z | –zookeeperNamespace 用来创建ha的zk子路径的命名空间 |