绑定完请刷新页面
取消
刷新

分享好友

×
取消 复制
Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理
2020-05-21 02:49:11

前文传送门:

「Python 图像处理 OpenCV (1):入门」

「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」

图像属性

图像属性包括行数,列数和通道数,图像数据类型,像素数等。

1. 形状:shape

图像的形状可以通过 shape 关键字进行获取,使用 shape 关键的后,获取的信息包括行数、列数、通道数的元祖。

需要注意的是,如果是灰度图片,只会返回图像的行数和列数,而彩色图片才会图像的行数、列数和通道数。

示例如下:

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR)

print(color_img.shape)

# 结果打印
(310, 560, 3)

# 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)

print(gray_img.shape)

# 结果打印
(310, 560)
复制代码

2. 像素数量:size

图像的像素数量可以通过关键字 size 进行获取。

同样需要注意的是,灰度图片的像素数量是要小于彩色图片的,具体的关系是 1/3 。

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR)

print(color_img.size)

# 结果打印
520800

# 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)

print(gray_img.size)

# 结果打印
173600
复制代码

3. 图像类型-dtype

图像类型是通过关键字 dtype 获取的,通常返回 uint8 ,这个属性在彩色图片和灰度图片中是保持一致的。

注意 dtype 在调试时非常重要,因为 OpenCV-Python 代码中的大量错误是由的数据类型引起的。

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR)

print(color_img.dtype)

# 结果打印
uint8

# 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)

print(gray_img.dtype)

# 结果打印
uint8
复制代码

获取图像感兴趣 ROI 区域

ROI(Region of Interest)表示感兴趣区域。

它是指从被处理图像以方框、圆形、椭圆、不规则多边形等方式勾勒出需要处理的区域。可以通过各种算子(Operator)和函数求得感兴趣ROI区域,并进行图像的下一步处理,被广泛应用于热点地图、人脸识别、图像分割等领域。

如果我们要对于图像中的眼睛检测,首先对整个图像进行人脸检测。在获取人脸图像时,我们只选择人脸区域,搜索其中的眼睛,而不是搜索整个图像。它提高了准确性(因为眼睛总是在面部上:D )和性能(因为我们搜索的区域很小)。

我们通过像素矩阵可以直接得到 ROI 区域,如: img[200:400, 200:400]

比如下面这个示例我们获取马里奥的脸,然后再把它显示出来:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

face = img[10:175, 100:260]

# 原始图像显示
cv.imshow("demo", img)

# 马里奥的脸显示
cv.imshow("face", face)

#等待显示
cv.waitKey(0)
cv.destroyAllWindows()
复制代码

它的结果如下:

如果我们要把这两张图像合成一张图像,可以对图像进行区域赋值:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

# 获取 ROI 区域
face = img[10:175, 100:260]
# 图像赋值
img[0:165, 0:160] = face

# 原始图像显示
cv.imshow("demo", img)

#等待显示
cv.waitKey(0)
cv.destroyAllWindows()
复制代码

结果如下:

这里我稍微偷点懒,直接就把 ROI 区域放在了图片的左上角,这个位置可以随意指定,但是指定的区域要和 ROI 的区域一样大,否则会报一个 ValueError 的错误。

拆分和合并图像通道

1. 拆分图像通道

有些时候,我们需要分别处理图像的 B,G,R 通道。的通道,用 PS 抠过图的人应该都清楚抠图的时候可以使用单通道进行抠图操作。

将图像的通道拆分出来可以使用 split() 函数,如下:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

#拆分通道
b, g, r = cv.split(img)

# 分别显示三个通道的图像
cv.imshow("B", b)
cv.imshow("G", g)
cv.imshow("R", r)

# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()
复制代码

结果如下:

可以看到,三个通道的图像看起来都是灰白色的,这个玩过 PS 的人应该都很熟悉。

除了使用 split() 函数获取图像通道,还可以通过索引进行获取,代码如下:

b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]
复制代码

如果需要将所有红色像素都设置为零,无需先拆分通道,索引更快:

img[:, :, 2] = 0
复制代码

注意: split() 函数是一项耗时的操作(就时间而言)。因此,仅在必要时才这样做。否则请进行Numpy索引。

2. 合并图像通道

合并图像通道我们使用函数 merge() ,示例如下:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

# 拆分通道
b, g, r = cv.split(img)

# 合并图像通道
m = cv.merge([r, g, b])

cv.imshow('merge', m)

# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()
复制代码

结果如下:

这里如果是按照 [r, g, b] 进行图像通道合并,我们的马里奥就会变身成为蓝精灵,因为 OpenCV 是按照 BGR 读取的,如果想要显示会原图,合并的时候也按照 [b, g, r] 合并即可,如下:

如果我们想要做一个真正的蓝精灵,可以只提取 B 颜色通道,其余两个 G 、 R 通道全部设置为 0 ,这样,我们就获得了一个真正的蓝精灵(整个图像只有蓝色通道),代码如下:

import cv2 as cv
import numpy as np

# 读取图片
img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
rows, cols, chn = img.shape

# 拆分通道
b = img[:, :, 0]
g = np.zeros((rows,cols), dtype=img.dtype)
r = np.zeros((rows,cols), dtype=img.dtype)

# 合并图像通道
m = cv.merge([b, g, r])

cv.imshow('merge', m)

# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()
复制代码

结果如下:

同理,如果想要绿精灵和红精灵,一样可以做出来。

示例代码

如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。

参考

blog.csdn.net/eastmount/a…

woshicver.com/

您的扫码关注,是对小编坚持原创的大鼓励:)
分享好友

分享这个小栈给你的朋友们,一起进步吧。

人生苦短,不如学Python
创建时间:2020-06-18 16:48:21
Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
展开
订阅须知

• 所有用户可根据关注领域订阅专区或所有专区

• 付费订阅:虚拟交易,一经交易不退款;若特殊情况,可3日内客服咨询

• 专区发布评论属默认订阅所评论专区(除付费小栈外)

技术专家

查看更多
  • liuxuhui
    专家
戳我,来吐槽~